Yarmilko, A., Rozlomii, I., Mysiura, Y. (2023) Transforming Big Data: A Novel Arithmetic Compression Method Based on Symbol Frequency. 18th International Conference on Computer Science and Information Technologies (CSIT). с. 1-4.
Text
paper_4.pdf Download (304kB) |
Резюме
The article proposes a new method for arithmetic compression of large volumes of data. The used compression approach is based on dividing the original data into slices depending on the frequency of occurrence of symbols. The resulting cuts are subjected to arithmetic compression, which ensures an effective reduction of the volume of data, while maintaining the quality and reliability of information. The new method studies the statistical information on the frequency of occurrence of characters in the data set, which allowed setting the optimal place for dividing the data into slices. The main advantage of the proposed method lies in its ability to adapt to the specific characteristics of the data set, providing optimal partitioning and compression. This makes it possible to achieve a higher degree of stability with traditional arithmetic embossing methods while maintaining data quality. An additional advantage is the possibility of applying the method to various information types of data, which makes it a universal tool for optimizing the storage and transmission of large volumes.
Тип елементу : | Стаття |
---|---|
Неконтрольовані ключові слова: | arithmetic compression ; digital data processing ; big data ; frequency analysis ; adaptive model ; data encoding compression efficiency |
Теми: | Фізико-математичні науки |
Підрозділи: | Факультет обчислювальної техніки, інтелектуальних та управляючих систем |
Користувач, що депонує: | Наукова Бібліотека |
Дата внесення: | 23 Лют 2024 10:33 |
Останні зміни: | 23 Лют 2024 10:33 |
URI: | https://eprints.cdu.edu.ua/id/eprint/6032 |
Actions (login required)
Перегляд елементу |