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Abstract— The article proposes a new method for arithmetic 

compression of large volumes of data. The used compression 

approach is based on dividing the original data into slices 

depending on the frequency of occurrence of symbols. The 

resulting cuts are subjected to arithmetic compression, which 

ensures an effective reduction of the volume of data, while 

maintaining the quality and reliability of information. The new 

method studies the statistical information on the frequency of 

occurrence of characters in the data set, which allowed setting 

the optimal place for dividing the data into slices. The main 

advantage of the proposed method lies in its ability to adapt to 

the specific characteristics of the data set, providing optimal 

partitioning and compression. This makes it possible to achieve 

a higher degree of stability with traditional arithmetic 

embossing methods while maintaining data quality. An 

additional advantage is the possibility of applying the method to 

various information types of data, which makes it a universal 

tool for optimizing the storage and transmission of large 

volumes. 
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I. INTRODUCTION 

As the data volumes in the modern information society 
grow, there is a need for effective methods of storing and 
transmitting information [1]. Big data is becoming one of the 
most important fields of scientific research and technological 
development. The constant increase of the amount of 
information creates challenges related to the processing, 
analysis and storage of this data [2-4]. Research on the 
transformation of big data is also important in the context of 
solving the issues of ensuring the security of information 
flows and rational use of system resources in dynamic 
cooperative production systems [5]. Among the numerous 
approaches to optimizing the use of big data, one of the most 
important is data compression, which allows reducing the 
volume of data while preserving the quality of information [6]. 

In this context, a new approach to arithmetic data 
compression based on the use of frequency analysis is 
proposed. This method involves dividing the source data into 
subsegments depending on the frequency of occurrence of 
characters. This allows you to efficiently compress sub-
segments with a higher symbol frequency and achieve a 
higher degree of compression of the total volume of data. The 
aim of the new method lies in application in various areas 
where optimization of storage and transmission of large 
volumes of data is important. 

The purpose of this study is to develop and analyze a new 
method of arithmetic data compression based on frequency 
analysis. In addition, the paper conducts a comparative 

analysis of the proposed method with existing approaches to 
arithmetic compression in order to determine its effectiveness 
and advantages. 

II. RELATED WORKS 

It can be noted during the analysis of the existing 
publications and sources that arithmetic compression methods 
have been the object of research for a long time [7-11]. It is 
worth noting the method of arithmetic coding with the 
addition of cryptographic functions presented in [12], which 
enables additional protection and confidentiality during data 
compression. Many of the existing methods are based on 
statistical approaches and the use of probabilistic models for 
data compression [13]. However, most of them do not take 
into account the frequency of occurrence of symbols when 
determining the optimal data partitioning points. Thus, there 
is a need to develop a new method that uses symbol frequency 
information for efficient arithmetic data compression. 

III. PROBLEM DEFINITION 

Nowadays, during the backdrop of rapid growth of the 
amount of information, prognosis and data management are 
becoming critical tasks. One important aspect of this task is 
the ability of efficient data compression for storage and 
transmission purposes. Big data requires innovative 
approaches to compression, as traditional methods efficiency 
become insufficient [14-16]. 

Arithmetic compression methods have long been the 
object of research in the field of data compression. These 
methods are based on the use of probabilistic models and 
statistical approaches for information compression [17]. 
However, most existing methods do not take into account the 
frequency distribution of characters in the source data, which 
limits their effectiveness. Existing approaches to arithmetic 
compression are not always able to adapt to the specifics of 
different data sets, which limits their versatility and ability to 
achieve the optimal degree of compression. 

One of the key issues is the lack of an arithmetic 
compression method that uses symbol frequency information 
to efficiently slice data and compress it further. The use of 
such information would make it possible to achieve a greater 
degree of compression and preserve the quality of data. 

Therefore, a new arithmetic compression method is 
required, which would use frequency analysis to partition the 
data into subintervals and provide data compression that is 
more efficient. This study is aimed at the development and 
analysis of such a method, its advantages and potential 
applications in various areas of data processing and 
transmission. 



IV. COMPRESSION METHODS BASED ON ARITHMETIC 

ENCODING 

Let us consider existing compression methods that use 
arithmetic coding to reduce the amount of data. These 
techniques are key components of many modern compression 
algorithms, allowing information to be stored and transmitted 
with fewer bits. 

The following common methods of data compression 
based on arithmetic coding can be noted: 

 Adaptive arithmetic compression (AAC). This method 
uses adaptive probability models for data compression. 
It is able to adapt the probabilities of symbols based on 
previous information, which allows effectively 
compression of data from various types of sources [8-
10]. 

 Range arithmetic compression. This method breaks the 
range of possible character values into subranges, with 
each character displayed in a corresponding subrange. 
The probabilities of selecting sub-ranges are set 
according to the frequency of occurrence of symbols 
[18]. 

 Context-tree Weighting (CTW). This method uses tree 
structures to store the character context. It supports the 
modeling of long dependencies between symbols, 
providing efficient compression of sequential data 
[11]. 

 Block arithmetic compression. This method divides 
the raw data into blocks of a certain size and 
compresses each block separately. It is particularly 
efficient for data where sub-segments can be 
compressed individually, but may lose efficiency on 
smaller blocks [19]. 

 Method of frequency analysis. This method is based on 
dividing the data into subsegments depending on the 
frequency of occurrence of characters. Its feature is the 
use of frequency analysis to determine the optimal 
places of breakdown and sub-segments for 
compression [20]. 

Each of these methods uses its own arithmetic coding 
strategy, adapted to a certain type of data or specific task 
requirements, and has its own advantages and disadvantages, 
and the choice of a particular method will depend on the type 
of data to be compressed and the requirements for 
compression and decompression. 

The variety of existing methods includes the use of 
context, probabilistic models, tree structures and other 
approaches to achieve effective compression [14]. The main 
features of the compression methods are presented in Table I. 
This table provides an overview of some specific arithmetic 
compression methods and their main characteristics. While 
examining and comparing these methods, it is important to 
consider how they meet the specific requirements and types of 
data to be compressed. Each method has its advantages and 
limitations, and the choice of a particular approach may 
depend on the characteristics of the data, as well as 
performance and compression requirements. 

 

 

TABLE I.  PROPERTIES OF THE METHODS OF DATA ARITHMETIC 

ENCODING 

Method 
Main 

characteristics 
Advantages Disadvantages 

Adaptive 

Arithmetic 

Compression 
(AAC) 

Uses context 
models to adapt 

probabilities 

Effective for a 
variety of data 

types 

Requires more 
hardware 

resources 

Range 

arithmetic 

compression 

Splits a range of 

characters for 

each character 

Simple 
interface 

May show 

limited 

efficiency 

Context-tree 

Weighting  

Uses tree 

structures to 

adapt 
probabilities 

Efficiently 
compresses 

sequential data 

Requires more 
memory to 

store trees 

Block 

Arithmetic 
Compression 

Divides data 

into blocks and 

compresses 
them 

individually 

Good for 

compressing 
large data, can 

have multi-

threaded 
implementation 

May lose 
compression 

efficiency on 

smaller blocks 

Frequency 
analysis 

method 

Uses frequency 

of occurrence of 

symbols for 
data partitioning 

Effective for 

data with 

uneven symbol 
frequency 

Requires 

additional 
calculations to 

calculate 

frequencies 

 

V. OPTIMIZED METHOD OF DATA COMPRESSION 

A. The Algorithm of Arithmetic Data Encoding and 

Decoding 

Compressing large volumes of data requires taking into 
account the software and hardware capabilities of the platform 
that performs data compression. In the arithmetic compression 
methods described above, the following trends are revealed 
when the volume of input data increases: 

 Methods that use trees in the process (Context-tree 
Weighting) face the fact that the size and complexity 
(number of levels) of the tree increases with the 
increase in the size of the input data. This means that 
for a certain amount of input data, the size of the tree 
may exceed the size of the input data. In addition, 
processing such a tree takes a lot of time. 

 Methods that use statistical calculations during 
operation (frequency analysis method, adaptive 
arithmetic compression) face the fact that the 
statistical data required for their operation can be 
large. 

Methods that use real numbers during calculations (range 
compression method) face the problem of achieving the 
necessary accuracy of calculations to ensure the possibility of 
restoring the initial data. 

Therefore, in order to be able to compress data of arbitrary 
volume effectively, it is necessary to develop a method that 
combines the advantages of existing arithmetic compression 
methods and at the same time minimizes their disadvantages. 

The software and hardware capabilities of the platform 
that performs data compression usually do not allow 
processing a large amount of information in one block, so the 
input data should be divided into blocks of a size that ensures 
the maximum speed of data compression and optimal memory 
consumption. In addition, the division into blocks allows you 
to develop a multi-threaded implementation of the 
compression algorithm, which will allow more efficient use of 
the capabilities of the hardware and software platform. 



To achieve optimal calculation accuracy, the size of a 
single block of data must be a multiple of the size of a valid 
data type (for most platforms it is equal to 8 bytes, or 64 bits). 

After dividing the input data into blocks, the actual data 
encoding process begins. The input data is treated as a 
sequence of text characters in order to abstract from the data 
type. The classic algorithm for arithmetic data compression 
goes as follows: 

1) The first character of the input data stream is 
processed. It corresponds to any number from the 
interval [0; 1), which corresponds to this symbol. If 
the text consisted of exactly one character, then the 
work of the algorithm is completed. If there are more 
than one characters in the source text, then the 
working segment must be replaced with a sub-
segment that corresponds to the first character, and 
the encoding process should continue. 

2) The new working segment obtained in the previous 
step is divided into sub-segments, the length of 
which is proportional to the frequency of occurrence 
of characters in the text. This can be done using (1-
2): 

  

  

where L is the new lower limit of the working 
segment, H is the new upper limit of the working 
segment, LOld is the current lower limit of the 
working segment, HOld is the current upper limit of 
the working segment, X is the current symbol, 
HRange(X) is the upper limit of the current symbol, 
LRange(X) is the lower limit of the current symbol. 

3) Step 2 is repeated for each subsequent input data 
symbol until the end of the input data stream. 

 
The output data of the algorithm is any number of the 

interval obtained during the last iteration of the algorithm, the 
working segment, divided according to the frequencies with 
which symbols occur in the initial data stream (file), as well 
as the length (size, or the number of symbols) of the input data. 

The decoding algorithm performs inverse operations to the 
encoding algorithm. The input data is an encoded message - a 
real number, the length of the message, as well as a working 
segment, divided according to the frequency of occurrence of 
characters in the source text (equivalent to a frequency table). 
Data decoding algorithm goes as follows: 

1) The first symbol of the decoded data stream is 
determined by finding the symbol from the 
frequency table, which corresponds to the number 
from the current interval. If the length of the original 
message is greater than 1, then the algorithm 
continues its work. 

2) To decode the next symbol, the current subinterval 
is normalized by bringing it to the segment [0; 1) 
according to (3): 

  

where L is the new lower limit of the working 
segment, H is the new upper limit of the working 
segment, LOld is the current lower limit of the 
working segment, HOld is the current upper limit of 
the working segment, X is the current symbol, 
HRange(X) is the upper limit of the current symbol, 
LRange(X) is the lower limit of the current symbol. 

3) Step 2 is repeated for each subsequent input data 
symbol until the end of the input data stream. 

 
When applying this algorithm to a large amount of data, 

the speed of operations with real numbers may be insufficient 
(this is especially evident during the compression of data 
streams in real time). Therefore, it is necessary to define a 
combination of bit operations equivalent to mathematical 
operations on real numbers. 

Since the considered algorithm uses numbers belonging to 
the interval [0; 1), then it is sufficient to represent only the 
fractional part of the number in memory. For this, it is 
necessary to use an integer type, the size of which is equal to 
the size of the real number type – unsigned long integer type 
(unsigned int64). Then the number 0 will have the form of the 
hexadecimal number 0x00000000, and the number 1 will have 
the form of the hexadecimal number 0x11111111. Also, to 
preserve the accuracy of calculations, it is necessary to 
represent the boundaries of subsegments in the form of 
structures with two fields that store the numerator and 
denominator of the fraction, respectively. 

The algorithm with appropriate changes looks like this: 

1) Generate the frequency table for the alphabet that 
forms the text. 

2) Consider the first character of the text. It 
corresponds to any number from the working 
subsegment that corresponds to this symbol. If the 
text consisted of exactly one character, then the 
algorithm ends its work. If there are more than one 
characters in the source text, then the working 
segment is replaced with a sub-segment that 
corresponds to the first character, and continue 
encoding; 

3) Divide the new working segment into sub-segments, 
the length of which is proportional to the frequency 
of occurrence of characters in the text. This can be 
done using (1-2); 

4) If the value of the upper limit is less than the 
hexadecimal number 0x80000000 (which is 
equivalent to the decimal fraction 0.5), then bit 0 is 
output. Otherwise, bit 1 is output; 

5) The values of the upper and lower limits are shifted 
by one bit to the left, and then the bitwise OR value 
of the upper limit and the number 1 is performed. 

6) Step 2 is repeated for each subsequent input data 
symbol until the end of the input data stream is 
reached [21]. 

 
Mathematical operations in the decoding algorithm are 

similar to those in the encoding algorithm. 

B. Comparison of the performance of the arithmetic coding 

algorithm on different sets of input data 

In the process of working with a large amount of data, 
there is often a problem of the impossibility of processing the 
entire amount of data with one stream or file due to the large 



amount of information and hardware limitations. Therefore, it 
is advisable to investigate how the size of a single block of 
data affects the speed of the algorithm. 

The structure of the study was the following: 

1) An initial block of big data was generated; 
2) From this block of data, data sets for research were 

generated by slicing them into smaller blocks of a 
certain size; 

3) The time spent on the complete coding of each of the 
data sets for the experimental study was measured. 
Since encoding and decoding take approximately the 
same time, it is necessary to perform only the data 
encoding. 

 
The research parameters were as follows: the total size of 

the data block is 1 gigabyte, the data blocks were generated 
with the tools of the Linux operating system. The study was 
conducted without the use of multithreading tools. 

The results of the experiments are given in Table II, as well 
as in Fig. 1 and Fig. 2. The abnormally high encoding time of 
a large number of small blocks is due to the fact that some time 
is spent on data input and output. With a small block size to 
be encoded, the system spends more time reading and writing 
data than compressing data. 

TABLE II.  ENCODING TIME OF LARGE BLOCKED INPUT DATA 

Number of 

blocks 

Size of a single 

data block, 

bytes 

Encoding time 

of a single 

block, s 

Total data 

encoding time, 

s 

1073741824 1 0,003 3221225,472 

536870912 2 0,004 2147483,648 

268435456 4 0,003 805306,368 

134217728 8 0,003 402653,184 

67108864 16 0,003 201326,592 

33554432 32 0,003 100663,296 

16777216 64 0,003 50331,648 

8388608 128 0,003 25165,824 

4194304 256 0,003 12582,912 

2097152 512 0,003 6291,456 

1048576 1024 0,004 4194,304 

524288 2048 0,004 2097,152 

262144 4096 0,005 1310,72 

131072 8192 0,007 917,504 

65536 16384 0,011 720,896 

32768 32768 0,019 622,592 

16384 65536 0,034 557,056 

8192 131072 0,067 548,864 

4096 262144 0,124 507,904 

2048 524288 0,318 651,264 

1024 1048576 0,502 514,048 

512 2097152 0,954 488,448 

256 4194304 2,476 633,856 

128 8388608 4,248 543,744 

64 16777216 7,564 484,096 

32 33554432 15,713 502,816 

16 67108864 30,33 485,28 

8 134217728 60,822 486,576 

4 268435456 121,271 485,084 

2 536870912 243,962 487,924 

1 1073741824 485,593 485,593 

Presented in Fig. 1-2 dependencies allow us to conclude 
that too large a number of single data blocks, and, therefore, 
too small a single block size, leads to a decrease in data 
compression speed. 

 

Fig. 1. Dependence of the time spent on data compression on the amount of 

unit blocks 

 

Fig. 2. Dependence of the time spent on data compression on the size of the 

unit block 

From the results of the experimental study, it can be 
concluded that for more effective compression of large 
volumes of data, attention should be paid to the following 
criteria: 

 The number of single blocks into which the input data 
stream is divided must not be too large, because at the 
same time the time that the computer system spends 
on information input and output becomes a significant 
amount. 

 A properly implemented multi-threaded version of the 
arithmetic compression algorithm can significantly 
increase overall performance. 

 

Compression efficiency also depends on the type of data, 
as different data types have different statistical distributions of 
byte (character) frequencies in a file. In other words, if the 
input file already contains compressed data (an example of 
such a format is JPEG), then the efficiency of the subsequent 
compression of information will be lower. This statement is 
true for all data compression methods. 

DISCUSSION 

This article discusses the variety of existing methods of 
arithmetic data compression and their main characteristics. It 
is noted that each method has its advantages and limitations, 
which makes them suitable for various tasks of compression 
of large volumes of information. It is important to note that the 
efficiency of arithmetic compression is determined not only 



by the choice of a specific method, but also by the 
specifications of the data to be compressed. Some methods 
may be more suitable for textual data with complex 
relationships between characters, while others may be more 
efficient for numeric sequences or other types of information. 

The arithmetic compression frequency analysis method 
proposed in our study uses an innovative approach based on 
using the frequency of occurrence of symbols to divide data 
into subsegments. The segmentation process is performed 
using frequency analysis, which allows identification of the 
characters and their combinations that occur most often. This 
allows for an adaptive compression model that can effectively 
account for a variety of structures and patterns in the data. This 
approach allows achieving a greater degree of compression of 
the total amount of data, as it is aimed at optimal use of 
resources for storing and transmitting information.  

One of the main advantages of this method is its variability 
and adaptability to different types of data. It can be applied 
effectively to a variety of formats, for example, text data, 
images or videos. In addition, due to frequency analysis, this 
approach is able to adapt to changes in the data structure, 
ensuring constant compression efficiency. 

The application of a new approach to arithmetic data 
compression can have important consequences for many areas 
that work with large amounts of information. Reducing the 
amount of data contributes to a more efficient use of 
computing resources, reduces data storage requirements and 
speeds up the transfer of information. This can have a positive 
impact on a variety of industries, from scientific research and 
medical diagnostics to the entertainment industry and 
information technology. 

Evaluating the properties of the proposed approach, we 
performed compression of large volume audio and video data. 
The achieved levels of compression are significant in terms of 
overall positive consequences for the dynamics of 
communication systems. A positive property of the method is 
its acceptability for joint use with cryptographic methods. This 
creates prerequisites for greater complexity of information 
infrastructure systems and increasing their reliability 
(dependability) both by sending a minimized amount of data 
without losing their variety and veracity, and by implementing 
information protection measures. 

Therefore, a new approach to arithmetic data compression 
based on frequency analysis is a promising direction of 
research in the field of optimizing the use of big data. Its 
ability of efficient compression of data with high information 
quality can open new opportunities for the development of 
information technology and various industries based on data 
processing. Continued research in this area should focus on 
developing methods that are more versatile, efficient, and 
adaptable to a wide range of data. Understanding the variety 
of existing arithmetic compression methods and their 
characteristics will help researchers and engineers choose the 
most suitable method for specific data compression tasks, 
ensuring efficient and high-quality optimization of 
information processing. 
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