
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Transforming Big Data: A Novel Arithmetic

Compression Method Based on Symbol Frequency

Andrii Yarmilko

Department of Automated Systems

Software

Bohdan Khmelnytsky National

University of Cherkasy

Cherkasy, Ukraine

a-ja@ukr.net

Inna Rozlomii

Department of Information

Technologies

Bohdan Khmelnytsky National

University of Cherkasy

Cherkasy, Ukraine

inna-roz@ukr.net

Yuliia Mysiura

Department of Automated Systems

Software

Bohdan Khmelnytsky National

University of Cherkasy

Cherkasy, Ukraine
julmisura@ukr.net

Abstract— The article proposes a new method for arithmetic

compression of large volumes of data. The used compression

approach is based on dividing the original data into slices

depending on the frequency of occurrence of symbols. The

resulting cuts are subjected to arithmetic compression, which

ensures an effective reduction of the volume of data, while

maintaining the quality and reliability of information. The new

method studies the statistical information on the frequency of

occurrence of characters in the data set, which allowed setting

the optimal place for dividing the data into slices. The main

advantage of the proposed method lies in its ability to adapt to

the specific characteristics of the data set, providing optimal

partitioning and compression. This makes it possible to achieve

a higher degree of stability with traditional arithmetic

embossing methods while maintaining data quality. An

additional advantage is the possibility of applying the method to

various information types of data, which makes it a universal

tool for optimizing the storage and transmission of large

volumes.

Keywords— arithmetic compression, digital data processing,

big data, frequency analysis, adaptive model, data encoding,

compression efficiency

I. INTRODUCTION

As the data volumes in the modern information society
grow, there is a need for effective methods of storing and
transmitting information [1]. Big data is becoming one of the
most important fields of scientific research and technological
development. The constant increase of the amount of
information creates challenges related to the processing,
analysis and storage of this data [2-4]. Research on the
transformation of big data is also important in the context of
solving the issues of ensuring the security of information
flows and rational use of system resources in dynamic
cooperative production systems [5]. Among the numerous
approaches to optimizing the use of big data, one of the most
important is data compression, which allows reducing the
volume of data while preserving the quality of information [6].

In this context, a new approach to arithmetic data
compression based on the use of frequency analysis is
proposed. This method involves dividing the source data into
subsegments depending on the frequency of occurrence of
characters. This allows you to efficiently compress sub-
segments with a higher symbol frequency and achieve a
higher degree of compression of the total volume of data. The
aim of the new method lies in application in various areas
where optimization of storage and transmission of large
volumes of data is important.

The purpose of this study is to develop and analyze a new
method of arithmetic data compression based on frequency
analysis. In addition, the paper conducts a comparative

analysis of the proposed method with existing approaches to
arithmetic compression in order to determine its effectiveness
and advantages.

II. RELATED WORKS

It can be noted during the analysis of the existing
publications and sources that arithmetic compression methods
have been the object of research for a long time [7-11]. It is
worth noting the method of arithmetic coding with the
addition of cryptographic functions presented in [12], which
enables additional protection and confidentiality during data
compression. Many of the existing methods are based on
statistical approaches and the use of probabilistic models for
data compression [13]. However, most of them do not take
into account the frequency of occurrence of symbols when
determining the optimal data partitioning points. Thus, there
is a need to develop a new method that uses symbol frequency
information for efficient arithmetic data compression.

III. PROBLEM DEFINITION

Nowadays, during the backdrop of rapid growth of the
amount of information, prognosis and data management are
becoming critical tasks. One important aspect of this task is
the ability of efficient data compression for storage and
transmission purposes. Big data requires innovative
approaches to compression, as traditional methods efficiency
become insufficient [14-16].

Arithmetic compression methods have long been the
object of research in the field of data compression. These
methods are based on the use of probabilistic models and
statistical approaches for information compression [17].
However, most existing methods do not take into account the
frequency distribution of characters in the source data, which
limits their effectiveness. Existing approaches to arithmetic
compression are not always able to adapt to the specifics of
different data sets, which limits their versatility and ability to
achieve the optimal degree of compression.

One of the key issues is the lack of an arithmetic
compression method that uses symbol frequency information
to efficiently slice data and compress it further. The use of
such information would make it possible to achieve a greater
degree of compression and preserve the quality of data.

Therefore, a new arithmetic compression method is
required, which would use frequency analysis to partition the
data into subintervals and provide data compression that is
more efficient. This study is aimed at the development and
analysis of such a method, its advantages and potential
applications in various areas of data processing and
transmission.

IV. COMPRESSION METHODS BASED ON ARITHMETIC

ENCODING

Let us consider existing compression methods that use
arithmetic coding to reduce the amount of data. These
techniques are key components of many modern compression
algorithms, allowing information to be stored and transmitted
with fewer bits.

The following common methods of data compression
based on arithmetic coding can be noted:

 Adaptive arithmetic compression (AAC). This method
uses adaptive probability models for data compression.
It is able to adapt the probabilities of symbols based on
previous information, which allows effectively
compression of data from various types of sources [8-
10].

 Range arithmetic compression. This method breaks the
range of possible character values into subranges, with
each character displayed in a corresponding subrange.
The probabilities of selecting sub-ranges are set
according to the frequency of occurrence of symbols
[18].

 Context-tree Weighting (CTW). This method uses tree
structures to store the character context. It supports the
modeling of long dependencies between symbols,
providing efficient compression of sequential data
[11].

 Block arithmetic compression. This method divides
the raw data into blocks of a certain size and
compresses each block separately. It is particularly
efficient for data where sub-segments can be
compressed individually, but may lose efficiency on
smaller blocks [19].

 Method of frequency analysis. This method is based on
dividing the data into subsegments depending on the
frequency of occurrence of characters. Its feature is the
use of frequency analysis to determine the optimal
places of breakdown and sub-segments for
compression [20].

Each of these methods uses its own arithmetic coding
strategy, adapted to a certain type of data or specific task
requirements, and has its own advantages and disadvantages,
and the choice of a particular method will depend on the type
of data to be compressed and the requirements for
compression and decompression.

The variety of existing methods includes the use of
context, probabilistic models, tree structures and other
approaches to achieve effective compression [14]. The main
features of the compression methods are presented in Table I.
This table provides an overview of some specific arithmetic
compression methods and their main characteristics. While
examining and comparing these methods, it is important to
consider how they meet the specific requirements and types of
data to be compressed. Each method has its advantages and
limitations, and the choice of a particular approach may
depend on the characteristics of the data, as well as
performance and compression requirements.

TABLE I. PROPERTIES OF THE METHODS OF DATA ARITHMETIC

ENCODING

Method
Main

characteristics
Advantages Disadvantages

Adaptive

Arithmetic

Compression
(AAC)

Uses context
models to adapt

probabilities

Effective for a
variety of data

types

Requires more
hardware

resources

Range

arithmetic

compression

Splits a range of

characters for

each character

Simple
interface

May show

limited

efficiency

Context-tree

Weighting

Uses tree

structures to

adapt
probabilities

Efficiently
compresses

sequential data

Requires more
memory to

store trees

Block

Arithmetic
Compression

Divides data

into blocks and

compresses
them

individually

Good for

compressing
large data, can

have multi-

threaded
implementation

May lose
compression

efficiency on

smaller blocks

Frequency
analysis

method

Uses frequency

of occurrence of

symbols for
data partitioning

Effective for

data with

uneven symbol
frequency

Requires

additional
calculations to

calculate

frequencies

V. OPTIMIZED METHOD OF DATA COMPRESSION

A. The Algorithm of Arithmetic Data Encoding and

Decoding

Compressing large volumes of data requires taking into
account the software and hardware capabilities of the platform
that performs data compression. In the arithmetic compression
methods described above, the following trends are revealed
when the volume of input data increases:

 Methods that use trees in the process (Context-tree
Weighting) face the fact that the size and complexity
(number of levels) of the tree increases with the
increase in the size of the input data. This means that
for a certain amount of input data, the size of the tree
may exceed the size of the input data. In addition,
processing such a tree takes a lot of time.

 Methods that use statistical calculations during
operation (frequency analysis method, adaptive
arithmetic compression) face the fact that the
statistical data required for their operation can be
large.

Methods that use real numbers during calculations (range
compression method) face the problem of achieving the
necessary accuracy of calculations to ensure the possibility of
restoring the initial data.

Therefore, in order to be able to compress data of arbitrary
volume effectively, it is necessary to develop a method that
combines the advantages of existing arithmetic compression
methods and at the same time minimizes their disadvantages.

The software and hardware capabilities of the platform
that performs data compression usually do not allow
processing a large amount of information in one block, so the
input data should be divided into blocks of a size that ensures
the maximum speed of data compression and optimal memory
consumption. In addition, the division into blocks allows you
to develop a multi-threaded implementation of the
compression algorithm, which will allow more efficient use of
the capabilities of the hardware and software platform.

To achieve optimal calculation accuracy, the size of a
single block of data must be a multiple of the size of a valid
data type (for most platforms it is equal to 8 bytes, or 64 bits).

After dividing the input data into blocks, the actual data
encoding process begins. The input data is treated as a
sequence of text characters in order to abstract from the data
type. The classic algorithm for arithmetic data compression
goes as follows:

1) The first character of the input data stream is
processed. It corresponds to any number from the
interval [0; 1), which corresponds to this symbol. If
the text consisted of exactly one character, then the
work of the algorithm is completed. If there are more
than one characters in the source text, then the
working segment must be replaced with a sub-
segment that corresponds to the first character, and
the encoding process should continue.

2) The new working segment obtained in the previous
step is divided into sub-segments, the length of
which is proportional to the frequency of occurrence
of characters in the text. This can be done using (1-
2):

where L is the new lower limit of the working
segment, H is the new upper limit of the working
segment, LOld is the current lower limit of the
working segment, HOld is the current upper limit of
the working segment, X is the current symbol,
HRange(X) is the upper limit of the current symbol,
LRange(X) is the lower limit of the current symbol.

3) Step 2 is repeated for each subsequent input data
symbol until the end of the input data stream.

The output data of the algorithm is any number of the

interval obtained during the last iteration of the algorithm, the
working segment, divided according to the frequencies with
which symbols occur in the initial data stream (file), as well
as the length (size, or the number of symbols) of the input data.

The decoding algorithm performs inverse operations to the
encoding algorithm. The input data is an encoded message - a
real number, the length of the message, as well as a working
segment, divided according to the frequency of occurrence of
characters in the source text (equivalent to a frequency table).
Data decoding algorithm goes as follows:

1) The first symbol of the decoded data stream is
determined by finding the symbol from the
frequency table, which corresponds to the number
from the current interval. If the length of the original
message is greater than 1, then the algorithm
continues its work.

2) To decode the next symbol, the current subinterval
is normalized by bringing it to the segment [0; 1)
according to (3):

where L is the new lower limit of the working
segment, H is the new upper limit of the working
segment, LOld is the current lower limit of the
working segment, HOld is the current upper limit of
the working segment, X is the current symbol,
HRange(X) is the upper limit of the current symbol,
LRange(X) is the lower limit of the current symbol.

3) Step 2 is repeated for each subsequent input data
symbol until the end of the input data stream.

When applying this algorithm to a large amount of data,

the speed of operations with real numbers may be insufficient
(this is especially evident during the compression of data
streams in real time). Therefore, it is necessary to define a
combination of bit operations equivalent to mathematical
operations on real numbers.

Since the considered algorithm uses numbers belonging to
the interval [0; 1), then it is sufficient to represent only the
fractional part of the number in memory. For this, it is
necessary to use an integer type, the size of which is equal to
the size of the real number type – unsigned long integer type
(unsigned int64). Then the number 0 will have the form of the
hexadecimal number 0x00000000, and the number 1 will have
the form of the hexadecimal number 0x11111111. Also, to
preserve the accuracy of calculations, it is necessary to
represent the boundaries of subsegments in the form of
structures with two fields that store the numerator and
denominator of the fraction, respectively.

The algorithm with appropriate changes looks like this:

1) Generate the frequency table for the alphabet that
forms the text.

2) Consider the first character of the text. It
corresponds to any number from the working
subsegment that corresponds to this symbol. If the
text consisted of exactly one character, then the
algorithm ends its work. If there are more than one
characters in the source text, then the working
segment is replaced with a sub-segment that
corresponds to the first character, and continue
encoding;

3) Divide the new working segment into sub-segments,
the length of which is proportional to the frequency
of occurrence of characters in the text. This can be
done using (1-2);

4) If the value of the upper limit is less than the
hexadecimal number 0x80000000 (which is
equivalent to the decimal fraction 0.5), then bit 0 is
output. Otherwise, bit 1 is output;

5) The values of the upper and lower limits are shifted
by one bit to the left, and then the bitwise OR value
of the upper limit and the number 1 is performed.

6) Step 2 is repeated for each subsequent input data
symbol until the end of the input data stream is
reached [21].

Mathematical operations in the decoding algorithm are

similar to those in the encoding algorithm.

B. Comparison of the performance of the arithmetic coding

algorithm on different sets of input data

In the process of working with a large amount of data,
there is often a problem of the impossibility of processing the
entire amount of data with one stream or file due to the large

amount of information and hardware limitations. Therefore, it
is advisable to investigate how the size of a single block of
data affects the speed of the algorithm.

The structure of the study was the following:

1) An initial block of big data was generated;
2) From this block of data, data sets for research were

generated by slicing them into smaller blocks of a
certain size;

3) The time spent on the complete coding of each of the
data sets for the experimental study was measured.
Since encoding and decoding take approximately the
same time, it is necessary to perform only the data
encoding.

The research parameters were as follows: the total size of

the data block is 1 gigabyte, the data blocks were generated
with the tools of the Linux operating system. The study was
conducted without the use of multithreading tools.

The results of the experiments are given in Table II, as well
as in Fig. 1 and Fig. 2. The abnormally high encoding time of
a large number of small blocks is due to the fact that some time
is spent on data input and output. With a small block size to
be encoded, the system spends more time reading and writing
data than compressing data.

TABLE II. ENCODING TIME OF LARGE BLOCKED INPUT DATA

Number of

blocks

Size of a single

data block,

bytes

Encoding time

of a single

block, s

Total data

encoding time,

s

1073741824 1 0,003 3221225,472

536870912 2 0,004 2147483,648

268435456 4 0,003 805306,368

134217728 8 0,003 402653,184

67108864 16 0,003 201326,592

33554432 32 0,003 100663,296

16777216 64 0,003 50331,648

8388608 128 0,003 25165,824

4194304 256 0,003 12582,912

2097152 512 0,003 6291,456

1048576 1024 0,004 4194,304

524288 2048 0,004 2097,152

262144 4096 0,005 1310,72

131072 8192 0,007 917,504

65536 16384 0,011 720,896

32768 32768 0,019 622,592

16384 65536 0,034 557,056

8192 131072 0,067 548,864

4096 262144 0,124 507,904

2048 524288 0,318 651,264

1024 1048576 0,502 514,048

512 2097152 0,954 488,448

256 4194304 2,476 633,856

128 8388608 4,248 543,744

64 16777216 7,564 484,096

32 33554432 15,713 502,816

16 67108864 30,33 485,28

8 134217728 60,822 486,576

4 268435456 121,271 485,084

2 536870912 243,962 487,924

1 1073741824 485,593 485,593

Presented in Fig. 1-2 dependencies allow us to conclude
that too large a number of single data blocks, and, therefore,
too small a single block size, leads to a decrease in data
compression speed.

Fig. 1. Dependence of the time spent on data compression on the amount of

unit blocks

Fig. 2. Dependence of the time spent on data compression on the size of the

unit block

From the results of the experimental study, it can be
concluded that for more effective compression of large
volumes of data, attention should be paid to the following
criteria:

 The number of single blocks into which the input data
stream is divided must not be too large, because at the
same time the time that the computer system spends
on information input and output becomes a significant
amount.

 A properly implemented multi-threaded version of the
arithmetic compression algorithm can significantly
increase overall performance.

Compression efficiency also depends on the type of data,
as different data types have different statistical distributions of
byte (character) frequencies in a file. In other words, if the
input file already contains compressed data (an example of
such a format is JPEG), then the efficiency of the subsequent
compression of information will be lower. This statement is
true for all data compression methods.

DISCUSSION

This article discusses the variety of existing methods of
arithmetic data compression and their main characteristics. It
is noted that each method has its advantages and limitations,
which makes them suitable for various tasks of compression
of large volumes of information. It is important to note that the
efficiency of arithmetic compression is determined not only

by the choice of a specific method, but also by the
specifications of the data to be compressed. Some methods
may be more suitable for textual data with complex
relationships between characters, while others may be more
efficient for numeric sequences or other types of information.

The arithmetic compression frequency analysis method
proposed in our study uses an innovative approach based on
using the frequency of occurrence of symbols to divide data
into subsegments. The segmentation process is performed
using frequency analysis, which allows identification of the
characters and their combinations that occur most often. This
allows for an adaptive compression model that can effectively
account for a variety of structures and patterns in the data. This
approach allows achieving a greater degree of compression of
the total amount of data, as it is aimed at optimal use of
resources for storing and transmitting information.

One of the main advantages of this method is its variability
and adaptability to different types of data. It can be applied
effectively to a variety of formats, for example, text data,
images or videos. In addition, due to frequency analysis, this
approach is able to adapt to changes in the data structure,
ensuring constant compression efficiency.

The application of a new approach to arithmetic data
compression can have important consequences for many areas
that work with large amounts of information. Reducing the
amount of data contributes to a more efficient use of
computing resources, reduces data storage requirements and
speeds up the transfer of information. This can have a positive
impact on a variety of industries, from scientific research and
medical diagnostics to the entertainment industry and
information technology.

Evaluating the properties of the proposed approach, we
performed compression of large volume audio and video data.
The achieved levels of compression are significant in terms of
overall positive consequences for the dynamics of
communication systems. A positive property of the method is
its acceptability for joint use with cryptographic methods. This
creates prerequisites for greater complexity of information
infrastructure systems and increasing their reliability
(dependability) both by sending a minimized amount of data
without losing their variety and veracity, and by implementing
information protection measures.

Therefore, a new approach to arithmetic data compression
based on frequency analysis is a promising direction of
research in the field of optimizing the use of big data. Its
ability of efficient compression of data with high information
quality can open new opportunities for the development of
information technology and various industries based on data
processing. Continued research in this area should focus on
developing methods that are more versatile, efficient, and
adaptable to a wide range of data. Understanding the variety
of existing arithmetic compression methods and their
characteristics will help researchers and engineers choose the
most suitable method for specific data compression tasks,
ensuring efficient and high-quality optimization of
information processing.

REFERENCES

[1] S. Boubiche, D. E. Boubiche, A. Bilami and H. Toral-Cruz, “Big data
challenges and data aggregation strategies in wireless sensor
networks”, IEEE access, 6, pp. 20558-20571, 2018.

[2] F. Restuccia and T. Melodia, “Big data goes small: Real-time
spectrum-driven embedded wireless networking through deep learning

in the RF loop”, in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications, IEEE, pp. 2152-2160, April, 2019.

[3] H. U. Amin, M. Z. Yusoff and R. F. Ahmad, “A novel approach based
on wavelet analysis and arithmetic coding for automated detection and
diagnosis of epileptic seizure in EEG signals using machine learning
techniques”, Biomedical Signal Processing and Control, 56, p. 101707,
2020.

[4] S. M. Darwish, “A modified image selective encryption-compression
technique based on 3D chaotic maps and arithmetic coding”,
Multimedia Tools and Applications, 78(14), pp. 19229-19252, 2019.

[5] A. Yarmilko, I. Rozlomii and H. Kosenyuk, “Hash Method for
Information Stream’s Safety in Dynamic Cooperative Production
System”, in Mathematical Modeling and Simulation of Systems:
Selected Papers of 16th International Scientific-practical Conference
MODS 2021, Springer International Publishing, Cham, Switzerland,
pp. 173-183, 2022.

[6] L. Wen, K. Zhou, S. Yang and L. Li, “Compression of smart meter big
data: A survey”, Renewable and Sustainable Energy Reviews, 91, pp.
59-69, 2018.

[7] S. Pandit, P. K. Shukla, A. Tiwari, P. K. Shukla, M. Maheshwari and
R. Dubey, “Review of video compression techniques based on fractal
transform function and swarm intelligence”, International Journal of
Modern Physics B, 34(08), pp. 2050061, 2020.

[8] Z. Guo, J. Fu, R. Feng and Z. Chen, “Accelerate neural image
compression with channel-adaptive arithmetic coding”, in 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), IEEE, pp.
1-5, May, 2021.

[9] J. J. Ding, I. H. Wang and H. Y. Chen, “Improved efficiency on
adaptive arithmetic coding for data compression using range-adjusting
scheme, increasingly adjusting step, and mutual-learning scheme”,
IEEE Transactions on Circuits and Systems for Video Technology,
28(12), pp. 3412-3423, 2017.

[10] O. Rippel and L. Bourdev, “Real-time adaptive image compression”,
in International Conference on Machine Learning, PMLR, pp. 2922-
2930, July, 2017.

[11] V. Lungu, I. Papageorgiou and I. Kontoyiannis, “Bayesian change-
point detection via context-tree weighting”, in 2022 IEEE Information
Theory Workshop (ITW), IEEE, pp. 125-130, November, 2022.

[12] S. T. Klein and D. Shapira, “Integrated encryption in dynamic
arithmetic compression”, Information and Computation, 279, p.
104617, 2021.

[13] H. Devi Kotha, M. Tummanapally and V. K. Upadhyay, “Review on
lossless compression techniques”, Journal of physics: conference
series, Vol. 1228, No. 1, p. 012007, IOP Publishing, 2019.

[14] U. Jayasankar, V. Thirumal and D. “Ponnurangam, A survey on data
compression techniques: From the perspective of data quality, coding
schemes, data type and applications”, Journal of King Saud University-
Computer and Information Sciences, 33(2), pp. 119-140, 2021.

[15] K. Sayood, Introduction to data compression. Morgan Kaufmann,
2017.

[16] Y. Xing, G. Li, Z. Wang, B. Feng, Z. Song and C. Wu, “GTZ: a fast
compression and cloud transmission tool optimized for FASTQ files”,
BMC bioinformatics, 18(16), pp. 233-242, 2017.

[17] S. Boopathiraja, P. Kalavathi and S. Chokkalingam, “A hybrid lossless
encoding method for compressing multispectral images using LZW
and arithmetic coding”, Int J Comput Sci Eng, 6, pp. 313-318, 2018.

[18] S. J. Sarkar, P. K. Kundu and G. Sarkar, “Development of lossless
compression algorithms for power system operational data”, IET
Generation, Transmission & Distribution, 12(17), pp. 4045-4052,
2018.

[19] U. Sharma, M. Sood and E. Puthooran, “A block adaptive near-lossless
compression algorithm for medical image sequences and diagnostic
quality assessment”, Journal of digital imaging, 33(2), pp. 516-530,
2020.

[20] Q. Liu, Y. Xu, and Z. Li, “DecMac: A Deep Context Model for High
Efficiency Arithmetic Coding”, in 2019 International Conference on
Artificial Intelligence in Information and Communication (ICAIIC),
IEEE, pp. 438-443, February, 2019.

[21] “Data Compression With Arithmetic Coding,” M. Nelson [Online]
Available: https://marknelson.us/posts/2014/10/19/data-compression-
with-arithmetic-coding.html (Accessed on August 20, 2023).

