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A B S T R A C T   

Standard Monte Carlo algorithms with constant pair interactions within the first coordination shell are usually 
quite effective for the description of ordering, tracer diffusion, chemical diffusion (but without Kirkendall shift 
effect) within any already existing ordered intermediate phase. Yet, one encounters big problems if one tries to 
simulate the formation and growth of ordered intermediate phase or, especially, simultaneous formation and 
growth of several intermediate phases during interdiffusion. Two algorithms providing solution of this problem, 
are discussed. The first algorithm is known (but not widely used for reactive growth) – account of interactions in 
the two coordination shells with negative mixing energy in the first coordination shell and positive mixing en
ergy in the second one. The second algorithm is new: interactions only within the first coordination shell of each 
atom but depending on the local composition within the cluster around interacting atoms. Both algorithms are 
shown to provide formation and growth of the ordered intermediate phases with rather narrow concentration 
ranges, growing with time (after some initial period) according to parabolic law.   

1. Introduction 

Formation and growth of the ordered intermediate phases (com
pounds) IMC is a typical phenomenon in soldering, brazing, welding, 
and other ways of bonding by solid-state reactions. These processes are, 
typically, diffusion-controlled and need atomic migration over the 
crystalline lattice. Long-term properties of intermetallic reactive growth 
(like parabolic law, Arrhenius law) are known for many years. On the 
other hand, early stages of reactive diffusion still represent a big chal
lenge both for experimental and theoretical researchers. This challenge 
includes the prediction of incubation time (nucleation problem), growth 
and suppression criteria (competition problem), the role of grain 
structure, and grain boundary migration (defect problem) [1]. To solve 
this problem, we need a simulation technique that enables simultaneous 
observation of atomic-scale migration, ordering, formation, and growth 
of ordered phases with distinct interfaces. Standard kinetic Monte-Carlo 
approach works very well for modeling tracer diffusion and chemical 
diffusion within solid solutions and ordered alloys, also for modeling of 
ordering in initially homogeneous alloys [2–4], but it encounters 
problems in application to formation and growth of intermediate order 
phases in diffusion couples with distinct boundaries (interfaces) be
tween them. For example, if one tries to model formation and growth of 

B2 compound at the contact of two BCC-materials, or of L10 compound 
at the contact of two FCC-materials, one gets the concentration profiles 
(Fig. 1a,b) which are very far from typical experimental step-wise con
centration profiles of the binary couples with growing ordered IMCs. A 
similar difficulty is encountered by the self-consistent nonlinear kinetic 
mean-field (KMF method) in the version suggested by George Martin 
[5], developed by Erdelyi et al [6] and later generalized to the full 3D 
scheme [7] and the inclusion of stochastic terms [8]. 

Experimental curves show typical concentration plateau in the vi
cinity of stoichiometric concentration and two concentration steps be
tween this plateau and terminal alloys – solution A in B and B in A [9]. 
Contrary to this picture, standard kinetic Monte-Carlo methods lead to 
continuous concentration profiles without steps and plateau. (Some 
steps at the final curve for L10-order at the right Fig. 2b are caused by the 
formation of antiphase L10-domains.) 

In the couple of two FCC-materials, a standard kinetic Monte-Carlo 
may demonstrate three intermediate ordered phases A3B (L12 struc
ture), AB (L10 structure), AB3(L12 structure), but these structures are 
separated with so small concentration intervals that it is sometimes a 
problem to distinguish the phases and to find the interfaces between 
them. (See for example Fig. 4 in [10].) 

Up to now, to the best of our knowledge, the only way to make MC- 

* Corresponding author. 
E-mail address: pasichna.vika2803@gmail.com (V. Pasichna).  

Contents lists available at ScienceDirect 

Computational Materials Science 

journal homepage: www.elsevier.com/locate/commatsci 

https://doi.org/10.1016/j.commatsci.2020.110114 
Received 4 August 2020; Received in revised form 7 October 2020; Accepted 8 October 2020   

mailto:pasichna.vika2803@gmail.com
www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2020.110114
https://doi.org/10.1016/j.commatsci.2020.110114
https://doi.org/10.1016/j.commatsci.2020.110114
http://crossmark.crossref.org/dialog/?doi=10.1016/j.commatsci.2020.110114&domain=pdf


Computational Materials Science 187 (2021) 110114

2

profiles closer to the realistic case was an account of interaction in the 
second coordination shell. [8,11]. This approach is good (and we explain 
it below), but it needs the introduction of additional parameters for the 
second shell (to provide really distinct ordered phases, one needs 
negative mixing energy for the first shell and positive mixing energy for 
the second shell). In this work we suggest one more alternative method, 
also providing distinct ordered phases. Namely, we suggest to use the 
interactions only with the nearest neighbors, but with energies 
depending on the averaged composition in the local surrounding of the 
two interacting atoms. (Something similar, but in a different form, was 
suggested in [12]). In this work, we check this method for the simplest 
cases of the single intermediate compound (IMC), growing between 
terminal solutions, and for two competing IMCs. The idea of energy 
depending of local surroundings has some analogy with Hume-Rothery 
phases which exist at some special ratio of free electrons number per 
atom in the alloy. The idea of concentration-dependent interaction en
ergies was recently used in [13]. Moreover, the influence of local sur
rounding on the interaction energy and the interactions within second 
coordination shell naturally appears when one uses the many-particle 
potentials in the diffusion modelling [14] 

In this paper, we formulate the new method of atomistic modeling of 
the reactive diffusion with interatomic interactions depending on local 
composition in the neighborhood of both interacting atoms. We realized 
this method in Monte Carlo techniques and apply it to BCC and FCC 
lattice, using two alternatives – Metropolis algorithm for the mechanism 
of direct atomic exchanges and Residence-Time-Algorithm (RTA) for the 
vacancy mechanism. So far, we will make our tests only for the case of 
single growing phase B2 in BCC case and two simultaneously forming 
phases (L10 and L12) in the FCC case. 

In Section 2 we introduce the concept of the “Local Long-range 
Order” for the substantially inhomogeneous systems with FCC an BCC 
lattices. In Section 3 we analyze the simulation of reactive diffusion with 
account of interactions in the second coordination shell. In Section 4 we 
analyze the alternative method of interactions account, dependent on 
local surrounding. 

The simulations in Sections 3 and 4 are made under the assumptions 
of direct exchange mechanism and Metropolis algorithm. In Section 5 
we repeat some of the simulations from Sections 3 and 4 using “true 
kinetic” RTA-algorithm with vacancy mechanism and compare the re
sults with the simulations using Metropolis algorithm with direct atomic 

exchange. We should note that in case of vacancy mechanism, one en
counters the well-known problem of Kirkendall effect, which is still a 
problem for Monte Carlo simulations on the rigid lattices (except recent 
attempts by Sowa and Kozubski [16], which are interesting but, so far, 
not discussed sufficiently by diffusion community). 

2. Concept of “Local Long-Range Order”(LLRO) 

In globally homogeneous binary alloy, the common Long Range 
Order (LRO) is defined in Eq. (1): 

η = pIA − CA

1 − vI
(1)  

where pI
A =

NI
A

NI — is the a priori probability of finding the A-atoms in the 
arbitrarily chosen lattice site of the sublattice I. NI,NI

A — the total 
number of sublattice I sites in the ordered domain and number of A- 

atoms on this sublattice, CA =
NI

A+NII
A

NI+NII — a local atomic fraction of A, 
averaged over both sublattices (we use to call it local concentration or 
local composition); νI = NI

NI+NII is the fraction of sublattice I sites. 
In this paper, we consider the ordering in the sharply inhomogeneous 

contact zone with a rather sharp concentration gradient. In this case, the 
notions of the global order as well as of global composition have no 
sense. Instead of order parameter for the whole ordered domain, we 
introduce the local parameters of composition and order, introduced for 
each site “i” (actually, “i” denotes three coordinates of the site) within 
some minimal cluster of neighboring sites “in” around this fixed site “i”. 
The starting notion is CA(i). In Monte Carlo modeling it is equal to just 1 
if the site “i” is occupied by A-atom, and it is equal just to 0 if it is 
occupied by B-atom. In mean-field models [5] it is a probability of site 
“i” to be occupied by sort A. A more detailed discussion can be found in 
[17]. 

2.1. B2-phase of BCC-lattice 

In the case of inhomogeneous B2-phase of BCC-lattice (with 8 nearest 
neighbors and the elementary cell containing 2 sites) the local compo
sition (averaged over the cell containing “central” atom and, partially, 
its nearest neighbors, which are “shared” with other cells) is defined in 
Eq. (2): 

Fig. 1. Typical concentration profile evolution (averaged over YZ atomic planes) in the diffusion couple of (a) two BCC-materials with B2 ordered phase formation 
and (b) two FCC-materials with the formation of three ordered phases – A3B and AB3 with L12 structure, and AB with L10-structure, simulated by Monte Carlo 
method with the account of only first coordination shell in the interaction energy. 
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CB2
A (i) =

CA(i) + 1
8

∑8
in=1CA(in)

2
(2) 

local a priori probability depends on the sublattice to which the site 
“i” belongs: 

pA(i) = CA(i)

and 

η(i) =
CA(i) −

СA(i)+1
8

∑8
in=1

CA(in)
2

1 − 1/2
= CA(i) −

1
8
∑8

in=1
CA(in)

(if “i” belongs to sublattice A) 
or 

pA(i) =
1
8
∑8

in=1
CA(in)

Fig. 2. Typical local order profile evolution (averaged over YZ atomic planes) in the diffusion couple of (a) two BCC-materials with B2 ordered phase formation and 
(b) two FCC-materials with the formation of three ordered phases – A3B and AB3 with L12 structure, and AB with L10-structure, simulated by Monte Carlo method 
with the account of only first coordination shell in the interaction energy. Local order was calculated by averaging over YZ-planes of Eq. (3) for B2-order at BCC- 
lattice, Eq. (5) for L12-order and Eq. (7) for L10-order at FCC-lattice. Steps at the final curve for L10-order at the right Fig. 2b are caused by the formation of antiphase 
L10-domains. 

Fig. 3. Phase diagram of FCC-binary alloy with interactions within two coor
dination shells, calculated by MC diffusion couple method with VI

mix =

− 2.9⋅10− 21J, VII
mix = + 6.76⋅10− 21J. 
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and 

η(i) =
1
8

∑8
in=1CA(in) −

CA(i)+1
8

∑8
in=1

CA(in)
2

1 − 1/2
= −

(

CA(i) −
1
8
∑8

in=1
CA(in)

)

(if “i” belongs to sublattice B) 
Thus, in general case the LLRO for inhomogeneous B2 structure is 

ηB2(i) = abs

(

CA(i) −
1
8
∑8

in=1
CA(in)

)

(3)  

2.2. L10-phase of FCC-lattice 

In the case of L10 phase of FCC-lattice (with 12 nearest neighbors and 
with elementary cell containing 4 sites) the local composition is deter
mined by Eq. (4): 

CL10
A (i) =

CA(i) + 1
4

∑12
in=1CA(in)

4
(4) 

Local a priori probability depends on sublattice orientation choice – 
in the XY-plane, or YZ, or ZX: 

pXYA (i) =
CA(i) + 1

4

∑4
in=1CA(in/XY − plane)

2  

pYZA (i) =
CA(i) + 1

4

∑4
in=1CA(in/YZ − plane)

2  

pZXA (i) =
CA(i) + 1

4

∑4
in=1CA(in/ZX − plane)

2     

ηXY(i) =

⎛

⎜
⎜
⎜
⎜
⎝

CA(i) +
1
4
∑4

in=1
CA(in/XY − plane)

2
−
CA(i) +

1
4
∑12

in=1
CA(in)

4

⎞

⎟
⎟
⎟
⎟
⎠

/(

1 −
1
2

)

=

=
CA(i)

2
+

∑4

in=1
CA(in/XY − plane)

4
−

∑12

in=1
CA(in)

8
=

=
CA(i)

2
−

∑4

in=1
CA(in/YZ − plane) +

∑4

in
CA(in/ZX − plane) −

∑4

in
CA(in/XY − plane)

8   

ηYZ(i) = CA(i)
2

−

∑4
in=1CA(in/ZX − plane) +

∑4
in=1CA(in/XY − plane) −

∑4
in=1CA(in/YZ − plane)

8   

ηZX(i) = CA(i)
2

−

∑4
in=1CA(in/XY − plane) +

∑4
in=1CA(in/YZ − plane) −

∑4
in=1CA(in/ZX − plane)

8   

Fig. 4. Concentration dependences of Gibbs free energy per atom for three 
intermediate phases and for terminal solid solutions at temperature T = 750K, 
and the common tangents construction demonstrating huge concentration gaps 
typical for the majority of phase diagrams. Parameters: VI

mix = − 2.9⋅10− 21J, 
VII

mix = + 6.76⋅10− 21J. 
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In general, taking into account the possibilities of antiphase domains 
choice, 

ηL10(i) = max
{
abs
(
ηXY (i)

)
, abs

(
ηYZ(i)

)
, abs

(
ηZX(i)

) }
(5)  

2.3. L12-phase of FCC-lattice 

Structure L12 corresponds approximately to A3B compound at FCC- 
lattice with majority sublattice I consisting of face centers (6/2 = 3 per 
elementary cell of 4 totals sites) and minority sublattice II consisting of 
vertexes (8/8 = 1 per elementary cell). The local composition is deter
mined in the same way for any site in Eq. (6): 

CL12
A (i) =

CA(i) + 1
4

∑12
in=1CA(in)

4
(6) 

As for local probability, its explicit expression depends on the choice 
(one of four possible choices) and on the orientation of plane containing 
the nearest neighbors from minority sublattice. 

If site “i” of majority sublattice I belongs to the XY-face of the 
elementary cell, then it has 4 nearest neighbors from sublattice II within 
this plane and another 8 = 4 + 4 nearest neighbors from its own sub
lattice within planes YZ and ZX.   

Fig. 5. Typical concentration profiles (averaged over YZ-planes) and snapshots of sites occupancy obtained by MC-simulations during diffusion and ordering in the 
couples: a) A-AB; b) A3B-AB3 with FCC-structure. (Interactions within two coordination shells. Parameters: VI

mix = − 2.9⋅10− 21J, VII
mix = + 6.76⋅10− 21J, T = 750K. 

Fig. 6. Typical concentration profile (averaged over YZ-planes) and a snapshot 
of sites occupancy obtained by MC-simulations during diffusion and ordering in 
the couple A-AB3 with FCC-structure (Interactions within two coordination 
shells. Parameters: VI

mix = − 2.9⋅10− 21J, VII
mix = + 6.76⋅10− 21J, T = 750K Two 

ordered intermediate phases A3B and AB are growing simultaneously. 

pXYA (i) =
CA(i) +

1
4
∑8

in=1
CA(in/YZ + ZX)

3
=
CA(i) +

1
4
∑12

in=1
CA(in)

3
−

1
12
∑4

in=1
CA(in/XY) =

=
4
3
CA(i) −

1
12
∑4

in=1
CA(in/XY)pYZA (i) =

4
3
CA(i) −

1
12
∑4

in=1
CA(in/YZ)pZXA (i) =

4
3
CA(i) −

1
12
∑4

in=1
CA(in/ZX)
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Thus,    

Fig. 7. Dependencies of squared fraction ξ2 of sites with overcritical local order parameter (a) L12 in diffusion couple A-AB, (b) L12 and (c) L10 in simulation of 
interdiffusion between pure A and ordered AB3 at various temperatures on Monte Carlo Steps. 

ηXYI (i) =
pXYA (i) − CA(i)

1 − 3/4
=

4
3

(

CA(i) −
1
4
∑4

in=1
CA(in/XY)

)

=
1
3

(

CA(i) +
1
4
∑12

in=1
CA(in) −

∑4

in=1
CA(in/XY)

)

ηYZI (i) =
4
3

(

CA(i) −
1
4
∑4

in=1
CA(in/YZ)

)

=
1
3

(

CA(i) +
1
4
∑12

in=1
CA(in) −

∑4

in=1
CA(in/YZ)

)
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If site “i” belongs to minority sublattice, then: 

ηII(i) =
CB(i) −

CB(i)+1
4

∑12
in=1

CB(in)
4

1 − 1/4
=

CA(i)+1
4

∑12
in=1

CA(in)
4 − CA(i)
1 − 1/4 

In general, taking into account the possibilities of antiphase domains 
choice, 

ηL12(i) = max
{
abs
(
ηXYI (i)

)
, abs

(
ηYZI (i)

)
, abs

(
ηZXI (i)

)
, abs(ηII(i) )

}
(7) 

Below we investigate diffusion and ordering in the diffusion couples 
oriented along axis X, we average local concentrations and local order 
parameters over each atomic plane YZ. The typical sizes of diffusion 
couples are: 100 atomic planes along axis X (with periodic boundary 
conditions along X), 20 planes along axis Y, and the same along axis Z. 

In Sections 3 and 4 we use the direct atomic exchanges mechanism 
and Metropolis algorithm with the probability of an atom jumping from 
site “i” to site “j” is determined by the dependence: 

pi→j =

⎧
⎪⎨

⎪⎩

1, (ΔE⩽0)

exp
(

−
ΔE
kT

, (ΔE > 0)
)

ΔE = Ej − Ei, Ei and Ej – system energies before and after the jump, k – 
Boltzmann constant; T – system temperature. 

3. An account of interactions within the second coordination 
shell 

3.1. FCC-couple 

For an illustration of the second shell influence, we chose the inter
action energies within first and second coordination shells. Contrary to 
KMF (mean-field approach [5–8]), in which the activation energies are 
calculated as the differences between some common saddle-point energy 
and the energy of configuration before jump, in Metropolis algorithm of 
Monte Carlo the exchange probabilities are determined only by the 
difference of configuration energies after and before exchange. There
fore, in our algorithm, the evolution is determined only by mixing en
ergies (Contrary to this, in [5–8] the evolution depends also on the so- 

Fig. 9. Typical concentration profile (averaged over YZ-planes) and a corre
sponding snapshot of the cross-section obtained by MC-simulations during 
diffusion and ordering in the BCC-couple A-B. 

Fig. 8. Arrhenius law for the parabolic growth rate constant (phase A3B in A- 
AB couple). 

Table 1 
Comparison of growth parameters for single-phase growth in the incremental couple and for competitive simultaneous growth.  

Activation energies and growth constants at fixed 
temperature for single-phase growth in the 
incremental couples A-AB and A3B-AB3 

Activation energies and growth constants at fixed temperature for simultaneous growth of both phases in the couple A-AB3 

QA3B/kB = 3403K  QA3B/kB = 2355K  
QAB/kB = 3512K  QAB/kB = 6162K  
T = 750 K kA3B = 1.52⋅10− 5MCS− 1  kA3B = 7.26⋅10− 6MCS− 1  

kAB = 7.67⋅10− 6MCS− 1  kAB = 2.52⋅10− 6MCS− 1   

ηZXI (i) =
4
3

(

CA(i) −
1
4
∑4

in=1
CA(in/ZX)

)

=
1
3

(

CA(i) +
1
4
∑12

in=1
CA(in) −

∑4

in=1
CA(in/ZX)

)
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called asymmetry parameter (VAA − VBB)/kT). Thus, we take, VI
mix =

− 2.9⋅10− 21J, VII
mix =+6.76⋅10− 21J and temperature interval from 650 K 

to 950 K. Note that mixing energy within the second shell is positive. 

3.1.1. Equilibrium properties 
We started with the construction of phase diagram by direct MC- 

simulation (Metropolis algorithm with direct exchanges) of equilibria 
in the diffusion couples, A-A3B, A3B-AB, AB-AB3 and AB3-B at various 
temperatures – the result is shown at Fig. 3 – it is qualitatively similar to 
analogic kinetic mean-field simulations in [5] but differ, of course, since 
in MC-simulations the short-range order (correlations between proba
bilities) is implicitly taken into account. 

If one forgets for a while about correlations and short-range order, 
the Bragg-Williams approximation for such alloy gives the following 
typical dependences of Gibbs energy per atom g(T,C, ηopt(T,C) ) as a 
function of composition and of optimized order at each composition: 

3.1.2. Kinetics of intermediate phase formation 
We simulated simultaneous ordering and phase formation in the 

couples A-AB (with the formation of single ordered intermediate phase 

A3B), A3B-AB3 (with the formation of single ordered intermediate 
phase AB), and AB-AB3 (with the formation of two competing ordered 
intermediate phases A3B and AB). Results for every diffusion couple 
were obtained as average over the ensemble of 10 tests. 

Corresponding transient profiles are shown at Fig. 5a,b and Fig. 6. 
Each concentration plateau corresponds to phase, sharp steps between 
plateau correspond to two-phase regions (gaps). Spike downwards at 
Fig. 5b corresponds to the antiphase boundary between two antiphase 
domains of L10-phase. Snapshots of sites occupancy by A(red) and B 
(blue) within certain cross-sections are also shown. 

In general, the volume of the ordered phase can be found from the 
width of the concentration plateau, if the phase grows layer by layer. If 
not, then a more safe way is to count the number of sites with local order 
parameter higher than some threshold (critical) value. We choose ηcr =

0.85. So, to check the validity of parabolic law, we built the dependence 
of squared fraction ξ2 of sites with overcritical local order parameter 
(η > ηcr), on time (in Monte Carlo Steps). Such dependencies at various 
temperatures are shown in Fig. 7. 

After some initial non-parabolic period, all these dependencies tend 
to ξ2 = kt, where the growth constant k satisfies the Arrhenius law in Eq. 
(8) (Fig. 8): 

ln(k) = −
QA3B

kB
⋅
1
T
+ const (8) 

Similar computer annealing was made for the single-phase AB (L10) 
growth in the incremental couple A3B-AB3, and for the simultaneous 
growth of two phases (A3B (L12) and AB(L10)) in the couple A-AB3. 

As expected, (see Table 1), the single-phase growth without 
competition is faster than competitive simultaneous growth with the 
neighboring phase. At the initial stage, this competition may even fully 
suppress one of two phases, as described in [1]. Phase suppression and 
competition will be simulated with MC in more details elsewhere. 
(Within a rough mean-field model it was done, for example, in [8]). 

3.2. BCC-couple 

Here we used the same parameters, as for FCC lattice: VI
mix =

− 2.9⋅10− 21J, VII
mix =+6.76⋅10− 21J within temperature interval from 

650 K to 900 K. Typical concentration profile demonstrating the growth 
of AB-phase in A-B couple, is shown in Fig. 9. 

One can see in Figs. 10, 11 that the transition to the parabolic regime 
for B2 phase growth takes more time (in MCS), and Arrhenius law is not 
that ideal. 

At the initial stages (less than 5000 MC-steps) the growth law is 

Fig. 10. (a) Dependencies of squared number ξ2 of sites with overcritical local order parameter, on Monte Carlo Steps for the growth of B2 phase AB in BCC-diffusion 
couple A-B at various temperatures. (b) dependencies ξ4 versus t at the initial stage of phase formation. 

Fig. 11. Arrhenius law for the parabolic growth rate constant (phase AB with 
B2-structure in A-B bcc-couple). 
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closer to ξ4 ≈ kt (Fig. 10b). Note that similar time dependence can be 
observed for the layer growth via grain-boundary diffusion with 
simultaneous lateral parabolic grain growth [15]. 

4. An account of interactions depending on local surrounding 

4.1. General equations 

Let us assume that the interaction energy between nearest neighbors 
of different sorts (A and B) sharply depends on the composition of the 
surrounding cluster and becomes most intensive if this composition is 
equal to stoichiometric value. For example, it can be single gauss-like 
dependence, if we want to distinguish a single intermediate phase 
with stoichiometric composition CIMC, 

Vmix
kBT

= −
ER
Z
exp
(
− α(Ccluster − CIMC)

2 ) (9a) 

or, it can be the superposition of 3 gauss-like dependences, if we 
want to distinguish 3 intermediate phases, say, A3B, AB, AB3: 

Vmix
kBT

= −
ER1

Z
exp
(
− α1(Ccluster − 1/4)2

)
−
ER2

Z
exp
(
− α2(Ccluster − 1/2)2

)

−
ER3

Z
exp
(
− α3(Ccluster − 3/4)2

)

(9b) 

Here ER =
Z|Emix |

kBT is the reduced mixing energy for stoichiometric 
composition. If one substitutes interaction energy Eq. (9a) into the 
Bragg-Wiliams approximation, it gives the typical dependencies shown 
in Fig. 12a,b. 

Defining the case of Monte Carlo simulation, we provide the precise 
definition of the surrounding cluster composition in Eq. (10).  

Ccluster =
C(i) + C(j)

2
(10) 

the average composition of the cluster consisting of two interacting 
atoms in the neighboring sites “i”, “j” and their nearest neighbors, C(i),
C(j) — mean concentrations prescribed to each of two neighboring sites. 

In the case of B2 structure at BCC lattice, we define mean concen
tration according to Eq. (11a). 

C(i) =
C(i) + 1

8

∑8
in=1C(in)

2
, C(j) =

C(j) + 1
8

∑8
jn=1C(jn)

2
(11a) 

In case of L12 and L10 structures at FCC lattice we define mean 
concentration according to Eq. (11b). 

C(i) =
C(i) + 1

4

∑12
in=1C(in)

4
, C(j) =

C(j) + 1
4

∑12
jn=1C(jn)

4
(11b)  

4.2. Simulation of AB -layer growth in BCC diffusion couple 

Applying Metropolis algorithm with interactions calculated accord
ing to eqs. (9–11), we get the formation and growth of B2-phase – see 
Fig. 13. 

Fig. 12. Typical dependence g(C,T)/kT with composition-dependent interaction (a) of type (9a) with ER = 8.5, α = 20 and (b) of type (9b) with, ER1 = ER3 = 80, 
ER2 = 30, α1 = α2 = α3 = 100. 

Fig. 13. Concentration profile (averaged over each YZ atomic plane) and a 
corresponding snapshot of the cross-section, obtained by MC-simulation of BCC- 
couple A-B with composition-dependent interactions according to Eqs. (9)–(11). 
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Growth kinetics was measured by counting the number of planes 
with average concentration within the range (0.425–0.575) (Fig. 14). 

4.3. Simulation of IMC growth and competition in FCC diffusion couples. 

We simulated IMC growth in FCC couples, introducing composition- 
dependent interactions according to Eq. (11b) with parameters ER1 =

ER2 = ER3 = 60, α1 = α2 = α3 = 110. 
Couple A3B-AB3. Single ordered intermediate phase AB with struc

ture L10 is formed and grows. The transient composition profile and a 
snapshot of the lattice are shown at Fig. 15. 

Couple A-AB. Single ordered intermediate phase A3B with structure 
L12 is formed and grows. The composition profile and snapshot of the 
lattice are shown in Fig. 16. 

Couple A-AB3. Two ordered intermediate phases A3B with structure 

L12 and AB with structure L10 are formed and grow simultaneously. The 
composition profile and snapshot of the lattice are shown in Fig. 17. 

Time dependencies (in Monte Carlo Steps) of phase thicknesses are 
shown in Fig. 18. They can be approximated by the parabolic law with 
the non-zero initial thickness (which may mean fast lateral growth at the 
initial stage): ΔX2 = ΔX2

0 + kt. 

5. Simulation of phase growth and competition by RTA- 
algorithm 

The questionable issue of previous Sections 3,4 is the use Metropolis 
algorithm and of direct atomic exchange mechanism for description of 
“time” dependencies of the phase width and total order. So far in this 
paper, our “time” was just the number of MC-steps. Strictly speaking, to 

Fig. 14. The squared number of planes with an average concentration within the range 0.425–0.575 versus the number of Monte Carlo Steps a) ER = 8.5; b) ER =

10. 

Fig. 16. Concentration profile (local concentrations averaged over planes YZ) 
and a snapshot of the cross-section for the transient moment of interdiffusion in 
A-AB couple. Parameters: ER1 = ER2 = ER3 = 60, α1 = α2 = α3 = 110. 

Fig. 15. Concentration profile (local concentrations averaged over planes YZ) 
and a snapshot of the cross-section for the transient moment of interdiffusion in 
A3B-AB3 couple. Parameters: ER1 = ER2 = ER3 = 60, α1 = α2 = α3 = 110. 
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describe the more realistic development in real time, one needs the ki
netic Monte Carlo which is realized usually by Residence–Time Algo
rithm (RTA). 

Indeed, in general, Metropolis algorithm may result in distortion of 
real time rates, but commonly it gives the correct sequence of events. 
According to G.Murch, “Although Metropolis transition probability is 
not particularly realistic for a diffusion process, the number of Monte 
Carlo jump attempts scales transparently to real time” [23]. RTA works 
well for vacancy mechanism, when vacancy chooses one of 12 (in FCC) 
or one of 8 (in BCC) possible evolution paths. In case of atomic exchange 
mechanism, the number of possible exchanges which compete within 
the system, is enormous. Usually, RTA-calculations take more time and 
memory. Moreover, if one uses a single vacancy per system, it can be 
trapped for some time within some phase region (see below), and to 
have the realistic rate observation, one should continue the simulations 
much longer, to satisfy the ergodicity criterion. 

We recalculated the diffusion, phase formation and ordering in three 
FCC diffusion couples, (A-AB and A-AB3 with constant interactions 
within two coordination shells, and A3B-AB3 with composition 
exponentially-dependent interaction within only first coordination 
shell) using the following standard equations for the probabilities of 
vacancy jumps Eq. (12) and for increment of real time after each jump 
Eq. (13): 

p(i→in) =
ν0(in)exp

(

− Q
kT

)

exp
(

−
Eafter(i→in)− Ebefore

2kT

)

∑Z
im=1ν0(im)exp

(

− Q
kT

)

exp
(

−
Eafter (i→im)− Ebefore

2kT

)

=

ν0(in)exp
(

−
Eafter (i→in)− Ebefore

2kT

)

∑Z
im=1ν0(im)exp

(

−
Eafter(i→im)− Ebefore

2kT

) (12)  

Δt(i→in) =
1

exp
(

− Q
kT

)
∑Z

im=1ν0(im)exp
(

−
Eafter(i→im)− Ebefore

2kT

) (13) 

Here “i” is a position of vacancy before its jump, “in” is one of Z 

nearest neighboring site, to which vacancy may jump, ν0(im) is an 
attempt frequency (to exchange with vacancy) by atom situated in 
neighboring site “im”, Q — common part of activation energy for all 
possible jumps, Ebefore and Eafter(i→im) are the energies of the system 
before vacancy jump and after its exchange with atom at site “im”. 
Energies were calculated as in previous sections. Q was taken as 10− 19J. 
All attempt frequencies were take the same: ν0(im) = ν0, and non- 
dimensional time t = ν0⋅realtimewas used. 

Fig. 19 appears to be similar (except scale, of course) to Fig. 7a, 
obtained by Metropolis algorithm with direct atomic exchanges. 

According to Fig. 20, growth of domains of newly formed L10 or
dered phase initially suppresses the initial weak order L12 (formed just 
at the initial contact planar interface). When the fast growing phase AB 
with L10 order consumes all initial pure B, the phase AB becomes 
marginal, it cannot grow further and is consumed by A3B phase which 
starts growing. If compare with the same results obtained by Metropolis 
algorithm with direct atomic exchanges shown in Fig. 7b,c we can notice 
that visible initial suppression of initial weak order phase L12 by newly 
formed L10 is absent. Moreover, phase L10 in case of vacancy mecha
nisms grows faster than L12 and in case of direct exchange mechanism – 
vice versa. One can imagine several reasons for such difference between 
two algorithms. One of them may be related to to the anisotropy of AB- 
ordered phase growth. In our simulations with vacancy mechanism all 
domains of the AB-phase had atomic planes of A and B perpendicular to 
the interface (snapshot at Fig. 20). In our simulations with direct ex
change mechanism we observe planes of A and B parallel to interface as 
well as perpendicular (snapshot at Fig. 17). Interdiffusion along the 
domain with atomic planes A and B perpendicular to interface, is faster 
than for parallel orientation [24]. 

According to Fig. 21, growth of AB phase is very irregular in time 
(like “stop-and-go” process). As shown in video (Supplementary mate
rial), such behavior is related to temporal trapping of single vacancy 
inside one of two intermediate phase layers (we have two layers instead 
of one, due to periodic boundary conditions). We did not have this 
problem with direct exchange mechanism. To solve this problem one 
should introduce several vacancies (but then one should be careful about 
their interaction because of vacancy supersaturation) or just make much 
longer annealing with averaging over time intervals. 

Thus, the results of RTA for vacancy mechanism and for Metropolis 
exchange mechanism are qualitatively similar in the case of single-phase 
growth but differs significantly in the case of phase competition during 
two intermediate phase formation. At that, one must remember that the 
vacancy mechanism is adequate for description of tracer diffusion but 
not very realistic in common simulation of interdiffusion and phase 
growth, because it does not take into account the vacancy sinks and 
sources and, respectively, dislocation climb and equalizing of compo
nents’ fluxes by the Kirkendall effect. 

6. Discussion and conclusions 

In this paper, we suggest and compare two major “tricks” – account 
of interactions with second coordination shell, and account of non-linear 
composition-dependent interaction within the first coordination shell. 
Both of them demonstrate the possibilities of distinguishing the phase 
layers with characteristic concentration plateau, ordering, and growth. 
The first trick is not that new, but almost not used, so far, for the ordered 
phase formation modeling in reactive diffusion (see [8]). Second trick — 
sharp concentration dependence of pair interactions — seems to be 
really new, we hope that it might be useful for the diffusion-ordering- 
reaction simulation community. 

No doubt, in the case of long annealing and parabolic growth of in
termediate phases one may use Monte Carlo just as one level of multi
scale modeling [14]: Molecular statics and dynamics (and may be DFT) 
give activation energies and preexponential factors for the atomic 
(actually, vacancy) jumps for all possible configurations, Monte Carlo 

Fig. 17. Concentration profile (local concentrations averaged over planes YZ) 
and a snapshot of the cross-section for the transient moment of interdiffusion in 
A-AB3 couple. The plateau at concentrations of about 0.75 and 0.5 correspond 
to two ordered phases growing simultaneously. Parameters: ER1 = ER2 =

ER3 = 60, α1 = α2 = α3 = 110. 
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uses this information for simulation of tracer atoms at given ordered 
structures and, possibly, of vacancy wind effects. This information is 
then used by phenomenological theory to calculate the Kirkendall effect 
and interdiffusion fluxes. At the very end, in coarsened space and time 
scales, these interdiffusion fluxes are incorporated into the Stephan 
problem of simultaneously growing phase layers. 

Such an idealistic picture is not very reliable in respect to known 
problems of stress generation and relaxation, void formation [18,19], 
migration, and pinning by moving interfaces [20], etc. We believe that 
the most challenging problem is still the initial stage when competing 
ordering and competing phase formation proceed simultaneously. In 
this case, one needs some united scheme that treats ordering, diffusion, 
and phase growth holistically. Solving this problem with vacancy 
mechanism, without appropriate tools to treat Kirkendall shift within 
Monte Carlo, seems too complicated problem at this moment. On the 
other hand, the action of Kirkendall effect, remaining gradients of 
nonequilibrium vacancies and stresses eventually equalize the opposite 
fluxes of A and B in the laboratory (Matano) reference frame. Therefore, 

the exchange mechanism in Monte Carlo simulation of reactive phase 
growth is not that “old-fashioned”. Nevertheless, we try also the vacancy 
mechanism with RTA-algorithm, though within the idealized model of 
rigid lattice. In both algorithms (Metropolis for direct exchanges and 
RTA for vacancy exchanges with atoms) both our tricks for intermediate 
phase formation and competition work effectively providing reasonable 
concentration plateau for the growing intermediate phases, distinct 
concentration steps at the interfaces, parabolic growth laws after 
nucleation stage. 

Actually, interdiffusion in binary alloy by vacancy mechanism 
without vacancy sinks and sources leads to Nernst-Planck-type expres
sion Eq. (14) for effective interdiffusion coefficient in terms of partial 
diffusivities: 

D̃ =
DADB

CADA + CBDB
(14) 

where DA,DB are the products of tracer diffusivities and thermody
namic factor [25,26,1]. 

Fig. 18. Time dependencies of the phase thicknesses for cases shown in Figs. 15–17: (a) for single-phase growth of L10 structure in A3B-AB3 couple; (b) for single- 
phase growth of L12 structure in A-AB couple; (c1) for growth of L10 structure with the simultaneous growth of L12 in the couple A-AB3; (c2) for growth of L12 
structure with the simultaneous growth of L02 in the couple A-AB3. Parameters: ER1 = ER2 = ER3 = 60, α1 = α2 = α3 = 110. 
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Since tracer diffusivities are typically proportional to the vacancy- 
atoms exchange frequencies and to the vacancy concentration, one 
might expect that the frequency of effective atomic exchanges is related 
(at least approximately) to frequencies of vacancy exchanges with A and 
B in Eq. (15): 

νef = CVνAVνBV
CAνAV + CBνBV

(15) 

(Here all C are the non-dimensional fractions – probabilities for site 
to be occupied by A,B or vacancy) 

In real alloys the density of sinks and sources of vacancies is suffi
cient. This leads to Kirkendall shift and to the Darken expression for 
interdiffusion coefficient (later modified by Manning with account of 
vacancy wind effect). Therefore, if one expects to take into account the 
Kirkendall shift, then one must relate (at least approximately) effective 
exchange rate to the atom-vacancy exchange frequencies in the different 
way Eq. (16): 

νef = CV(CBνAV + CAνBV ) (16) 

The next step in applications of the suggested algorithms can be 
related to nucleation of ordered IMC in homogeneous solution and in the 
sharp concentration gradients. (Thorough MC study of disordered phase 
nucleation can be found in [21].) Another important direction of further 
research would be checking the applicability of the idea of 
concentration-dependent nonlinear interactions to the recently devel
oped stochastic version of mean-field approach [7,8,22]. 
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Fig. 20. Squared fraction of sites with (a) local L12 order parameter and with (b) local L10 order parameter above 0.85 as the functions of time in simulation of 
interdiffusion between pure A and ordered AB3 by RTA-algorithm with vacancy mechanism. (Case of constant pair interaction energies within two coordina
tion shells). 

Fig. 19. Squared fraction of sites with local L12 order parameter above 0.85 as 
a function of time in simulation of interdiffusion between pure A and ordered 
AB by RTA-algorithm with vacancy mechanism. (Case of constant pair inter
action energies within two coordination shells). 
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Attachment A. Influence of perturbations on the simulation results.   

Change of the slope of the linear dependence “squared thickness / time (in percents) 

T small perturbations of initial atomic distribution with unchanged 
mean composition: random variation of initial atomic disorder 
within phase layer AB with the constant order parameter 

small perturbations of initial shape of contact: 
interface roughness by introducing steps with 
the height of 4 interplanar distances 

small perturbations of initial compositions in the 
diffusion couple: in the couple A-AB we change 
100% A by 98% (within solubility limit) 

650 
K 

− 2.3%  1.0%  1.8% 

700 
K 

3.2%  2.3%  3.2% 

750 
K 

− 0.0053–0.5%  2.1%  0.8% 

800 
K 

2.0%  4.6%  5.7%  

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.commatsci.2020.110114. 
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The effect of introducing stochasticity to kinetic mean-field calculations: 
Comparison with lattice kinetic Monte Carlo in case of regular solid solutions, 
Comput. Mater. Sci. 171 (2020), 109251, https://doi.org/10.1016/j. 
commatsci.2019.109251. 

[23] G.E. Murch, et al., Recent progress in the simulation of diffusion associated with 
hollow and Bi-metallic nanoparticles, Diffus Fundam 11 (2009) 42–51. 

[24] V. M. Bezpalchuk, R. Kozubski, and A. M. Gusak, Simulation of the tracer diffusion, 
bulk ordering, and surface reordering in F.C.C. structures by kinetic mean-field 
method, Usp. Fiz. Met., 18, No. 3: 205—233 (2017), doi: 10.15407/ufm.18.03.205; 
https://doi.org/10.15407/ufm.18.03.205, see also PhD thesis of V.Bezpalchuk 
(2017), Odesa (Ukraine). 

[25] A.V. Nazarov, K.P. Gurov, Kinetic Theory of interdiffusion in binary system. 
Influence of non-equilibrium vacancies on interdiffusion, Fiz. Met. Metalloved. 37 
(1974) 496–503. 

[26] K.P. Gurov, A.M. Gusak, A description of interdiffusion in alloys with an arbitrary 
capacity of vacancy sinks, Fiz. Met. Metalloved. 59 (6) (1985) 1062–1066. 

V. Pasichna and A. Gusak                                                                                                                                                                                                                    

https://doi.org/10.1016/j.mtla.2020.100791
https://doi.org/10.1016/j.mtla.2020.100791
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0085
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0085
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0085
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0090
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0090
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0090
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0095
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0095
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0100
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0100
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0100
https://doi.org/10.1103/PhysRevB.62.203
https://doi.org/10.1016/j.commatsci.2019.109251
https://doi.org/10.1016/j.commatsci.2019.109251
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0115
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0115
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0125
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0125
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0125
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0130
http://refhub.elsevier.com/S0927-0256(20)30605-4/h0130

	Alternative algorithms for simultaneous modeling of ordering and intermediate compound growth during reactive diffusion
	1 Introduction
	2 Concept of “Local Long-Range Order”(LLRO)
	2.1 B2-phase of BCC-lattice
	2.2 L10-phase of FCC-lattice
	2.3 L12-phase of FCC-lattice

	3 An account of interactions within the second coordination shell
	3.1 FCC-couple
	3.1.1 Equilibrium properties
	3.1.2 Kinetics of intermediate phase formation

	3.2 BCC-couple

	4 An account of interactions depending on local surrounding
	4.1 General equations
	4.2 Simulation of AB -layer growth in BCC diffusion couple
	4.3 Simulation of IMC growth and competition in FCC diffusion couples.

	5 Simulation of phase growth and competition by RTA-algorithm
	6 Discussion and conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgement
	Attachment A Influence of perturbations on the simulation results.
	Appendix A Supplementary data
	References


