
Серія «Прикладна математика. Інформатика» 

 

 
3 

СЕКЦІЯ «ПРИКЛАДНА МАТЕМАТИКА» 

 

УДК 532.517.4                             PACS  47.11.-j; 02.70.-c; 02.60.Cb; 47.27.E-; 47.27.em 

 

Boris Golovnya 

SOME SYSTEMATIC MISTAKES IN NEAR-WALL TURBULENCE MODELING AND 

POSSIBLE WAY TO OVERCOME THEM 

 

All near-wall models of turbulence do not reproduce the cascade energy transfer. In the 

author opinion, models poorly take into account the structure of near-wall turbulence. Therefore 

these models can not reproduce correctly all processes in turbulent boundary layer. Traditional 

correction terms can not be regarded as physically reasonable solution of the problem. As a result 

there are many turbulent flows that can not be simulated. This paper presents a possible 

explanation of difficulties encountered in the development of turbulence models for the calculation 

of the boundary layer. A technique to overcome these difficulties is presented. 

Keywords: turbulent boundary layer, near-wall turbulence modeling. 

 

Introduction  

Almost all modern models of turbulence are based on the equation of turbulent energy 

transfer. If such model is reckoned as universal then it must answers the three questions. First – 

where does the turbulent energy originate? Second – what happens to this energy later? Third – how 

does the energy dissipate? Otherwise there are certainly exists such flow that this model can not 

reproduce.  

Kolmogorov‟s theory of cascade energy transfer answers these questions. By this reason 

results of simulations by high-quality models must be in agreement with this theory. 

It is known that the RANS and LES type models do not reproduce the basic features of 

cascade energy transfer in simulations of the boundary layer. Main reason – these models poorly 

take into account the structure of near-wall turbulence. 

 

Physical effects not taken into account in modern models  

Experimental investigations [1], [2], [3] show that main role in a turbulent boundary layer is 

played by long-scaled quasi-ordered vortex structures commensurable with the layer thickness. 

Structures are disposed across the flow and have a limited length. The longitudinal size of such a 

structure is 6.1x  [2] or 1000x  [4], [5]. The distance along the stream in which it retains 

its own characteristics is about of 5  [6], Convection velocity of these structures is 

62.046.0eUU  [7], [8], and U increases with increasing of Re [8].  

Their schematic representation is shown in Figure 1 [3]. Structures move along the flow. 

While the structure moves velocity at a fixed point of the space within this structure gradually 

decreases in time. After passing the boundary that closes this structure, intense high-frequency 

fluctuations of velocity, temperature, pressure, etc. are observed and there occur jet ejections of 

decelerated liquid from the wall and invasion of accelerated to the wall region [9]. Experiments 

show that these jet ejections of liquid are accompanied by the long-scaled vortexes deceleration.  

As a result of the interaction of accelerated and decelerated parts of two long-scaled 

structures an inflection point appears on the average velocity profile. In turn, the appearance of the 

inflection point provides the appearance of new transversely oriented vortex [10]. Thus the 

transverse vortex originates and therefore exists at the expense of the energy of the averaged flow. 

All this is one cycle of a turbulent boundary layer renewal.  

The ejections interact with the averaged flow. As a result very thin longitudinally oriented 

vortexes are formed from the ejections. These vortexes merge pairwise and form so called 



ISSN 2076-5886. Вісник Черкаського університету. 2016. № 1-2 

 
4 

horseshoe vortexes [11]. Horseshoe vortices intertwined with each other. Their location according 

to [12] is shown in Figure 2. 

Experiments show that time scales of theses longitudinally oriented and horseshoe vortexes 

are rather small. But in the development of turbulence models a very large time of averaging is 

used. Theoretically this time tends to infinity. As a result of such averaging the following picture 

arises from the described process.  

This intertwining of horseshoe vortexes is observed as comprehensive whole, not as 

collection of separate eddies. We will call it a medium-scale structure. However, this structure 

really consists of thin vortexes. So, main properties of such vortexes are applied to the structure. 

First. In accordance with Kolmogorov‟s theory, thin vortexes dissipate very rapidly. So, the rate of 

dissipation in the medium-scale structure must be very high. Second. Thin vortexes create very 

small mixing. So, the turbulent viscosity in medium-scale structure is very small. 

At the same time simulations show that medium-scale structures have noticeable turbulent 

energy. For example, the model for calculation of the development of disturbances in the boundary 

layer was proposed by Zhang and Lilley [13]. In this model periodic disturbances were imposed on 

a turbulent flow. As a result, secondary disturbances in the form of slowly rotating formations 

appeared in the flow. These formations are very similar to the aggregation of horseshoe vortexes. 

They are placed in region 100y  and create fluctuations of averaged velocity 75.07.0ΔU . 

So, increase of the turbulent energy can be estimated as 28.025.0k . 

Now consider the turbulent energy spectrum in the boundary layer. It is supposed that a) the 

spectral function is averaged by time; b) long-scaled structures obey Kolmogorov‟s law 

It is known, that in free stream the k-ε type model satisfactorily reproduces inertial part of 

turbulence spectrum, i.e. results of calculations are in accord with Kolmogorov‟s „-5/3‟ law (for 

example, see [14]). The schematic plot of the spectral function is shown in Figure 3a.  

The hypothetical graph of the spectral function in some cross section of the layer which is 

placed very close to the wall is shown in Figure 3b. Figure 3a and 3b differ very markedly. Form of 

the Figure 3b is determined by two factors. First, main part of the graph corresponds to the cascade 

process theory because main part of the turbulent energy is concentrated in the long-scale 

structures. This part of the graph is in agreement with Figure 3a. Second, the ejection is presented in 

the graph at high wave numbers. It is determined by existence of the medium-scale structures in the 

layer. 

Let‟s move the cross section from the wall. Sizes of the medium-scale structures are much 

smaller than the layer thickness. So, at some distance from the wall the effect of these structures 

must start to decrease with increase of the distance, i.e. size of the ejection in Figure 3b must 

decrease also. On the boundary of layer Figure 3a and 3b must coincide. 

Any sufficiently general model of turbulence must be agreed with such behavior of 

turbulence. This means that model must answer the following questions.  

1. From the point of view of the theory of cascade process Figure 3b violates the energy 

conservation law. Indeed, the cascade process guarantees that if the wave number increase 

then the turbulent energy decreases. Growth of the turbulent energy in the cascade process is 

impossible 

2. As it was said above, the experiments show that the jet ejections of the liquid are 

accompanied by deceleration of the long-scaled structures. Because the medium-scale 

structures appear from these ejections it is natural to assume that some part of the braking 

energy is used on production of the medium-scale structures. So, it can be said that direct 

energy transfer from the long-scale to the medium-scale structures exists in the layer and 

this transfer occurs without any involvement of the cascade process. It is not clear how to 

introduce this mechanism into the model, especially if this model is in agreement with the 

cascade process. 

3. In RANS models fluctuation flow is averaged by time. In LES modes average is replaced by 

filtering. But as it is known filtering in LES method can be regarded as spatial average (for 
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example, see [15]). In any case very strange formation appears on location of the 

medium-scale structure. It has sufficiently large sizes 100L , noticeable turbulent 

energy, dissipate very rapidly, and create vanishingly small turbulent viscosity. 

All authors of models of turbulence in fact attempt to correspond to third item of this list. 

That means that all models of turbulence have the following properties.  

1. The calculated turbulent energy is equal to the sum of the energies of the long-scale and 

medium-scale structures.  

2. The calculated dissipation rate in the near-wall region is sufficiently high. This simulates the 

rapid dissipation of the medium-scale structures. 

3. The calculated turbulent viscosity in the near-wall region is strongly suppressed. This 

simulates the fact that the medium-scale structures have not effect on the turbulent viscosity. 

These properties are obtained by introducing into the model of the complex correction 

functions. Unfortunately these corrections effect on the long-scaled structures also. As a result the 

model looses all original positive qualities of the models without corrections and can not simulate 

the cascade process. 

 

New approach to turbulence modeling  

The author offers а radically different approach. It is based on the following hypothesis. From 

an engineering point of view the main problem of the turbulence modeling is to provide correct 

simulation of the mean flow. In its turn, quality reproduction of the turbulent viscosity guarantees 

correct simulation of the mean flow. But as stated above, the medium-scale structures create 

vanishingly small turbulent viscosity. So their influence can be neglected. At the same time sizes of 

the long-scale and medium-scale structures differ very markedly. By this reason the medium-scale 

structures weakly effect on the long-scale structures and this effect can be neglected also. So we can 

eliminate the medium-scale structures from the model without loss of generality.  

The medium-scale structures can be eliminated in the following way. Let k be the total 

turbulent energy, k0 – the energy of the long-scale structures, and k1 – the energy of the 

medium-scale structures. Neglecting the energy of interaction of structures we get 10 kkk . 

Denote kkf 00  or kfk 00 . Here f0 – some function.  

Schematically the equation of total turbulent energy transfer can be written as  

 
PkDiffDtDk  

(1) 

Here Diff – operator of diffusion transfer, P – rate of turbulent energy production,  - rate of 

k dissipation. Multiplying (1) on function f0 we obtain 

 

000
0

0000 fPfkfDiff
Dt

kDf
fPfkDifff

Dt

Dk
f

000
0 PfkDiff

Dt

Dk
 

 

 

(2) 

Here 00 f  - dissipation rate in the long-scale structures. Major result – the production 

term is multiplied on additional function. Transformation 000 kDiffkfDiffkDifff  is the 

model of turbulent diffusion. 

Let us remark that all these calculations are not rigorous and are needed only to clarify the 

origin of the equation (2). The same result can be obtained strictly on the base of equations of 

fluctuation components transfer. 
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Equations of the k-ε model for free flow are well-known 
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Now, taking into account equation (2), let us introduce corrections into the system (3)-(5). The 

resulting system has the following form 
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Here Ek and Eε are the corrections assigned to balance the diffusion on the wall.  

To close model (7)-(9) it must first be supplemented by the expression for the function f0. The 

graph of this function can be obtained based in the experimental data. In doing so it is enough to 

substitute into the model the experimentally obtained distributions of the turbulence energy and 

eddy viscosity and to consider system (7)-(8) as the system of equations relative to the function f0 

and dissipation. It is supposed hear that kk0  and 0EEk . Because we just want to 

understand how this graph looks this assumption does not exercise a significant influence. 

But it is much more convenient to generate the values of the turbulence energy and eddy 

viscosity by calculating on the basis of the well-tested models of turbulence. In the present paper, 

the models of Chien [16], Launder and Sharma [17], and Nagano and Tagawa [18] are used as data 

generators. The results of calculations of the function f0 are given in Figure 4. It is of interest to note 

that the graph almost exactly coincides with the velocity distribution in a laminar boundary layer. 

For comparison Figure 4 gives the familiar Pohlhausen solution.  

As a result of variance calculations the following approximation was obtained for the 

function f0:  

 

000 4.2exp15.5Reexp1 Lyf y
 

(10) 

where ykRey 00 , 
0

23

00

/kL . Test calculations have shown that the expressions  
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are good approximation for the wall corrections. 

After substitution of the wall corrections into the system of equations and cancelation we 

obtain the form of presentation of model equations  
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By the results of test calculations for the function Fν we obtained the following 

approximation: 

 
.4.2exp145Reexp1 00 LyF y  (13) 

The constants and the boundary conditions are: 

 

C =0.09, С =1.3, Сk=1, C2=1.45, C1=0.9C2. 

y=0 - k0= 0=0, y  - k0=ke, 0= e 

 

For constants C , С , and Сk the standard values were used. The constant C2 has been chosen 

in the following way. Transfer of turbulence in the external flow is described by the system of 

equations with initial conditions 
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This system has an exact solution  
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where  
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The flow in the free stream becomes laminar at infinity. By this reason at infinity turbulent 

energy, rate of dissipation and dissipative scale are equal to zero. So  
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As a result we have 015.1 22 CC  or 5.11 2C . Constant С2=1.45 was taken on 

the base of this relation.  

 

Testing the k–ε model: results of the calculation of forced turbulent flow in a boundary 

layer  

Figure 5, 6 and 7 show the results of calculations of a zero pressure gradient flat plate 

turbulent boundary layer. The agreement with the experimental data is very good. It will be recalled 

that the medium-scale structures were ignored in these calculations. By this reason the calculated 

values of the turbulent energy are less then the experimental data. 

 

Cascade energy transfer  

Calculation of cascade energy transfer may be performed in the following way. At the first 

step, the system of the k–ε type is solved. At the second step, the same system is solved with the 

dissipation, which is obtained at the first step, being used instead of the generation term. It is 

evident that the calculation step simulates the step of the cascade process. The number of steps is 

not limited.  

The correspondence of the results of calculation to the cascade process can be verified in the 

following way. First, it is known that transition of turbulent energy to heat occurs in vortices that 

have the dimensions commensurable with the Kolmogorov scales, i.e., the energy transferred to the 

cascade does not change. Hence it follows that if the dissipative term reflects the transfer of energy 

into the cascade process, then in such calculation it must not change. 

Second, if we assume that the wave number is proportional to 1/Lε, which follows from the 

dimensional reasons, then the dependence of ki/k on 1/Li, where i is the number of the step of the 

mentioned calculation, must not, as a minimum, be in contradiction with the known regularities of 

the cascade transfer.  

In the calculations by this model, the requirement ε=const is satisfied almost exactly (see 

Figure 8). At the same time, the turbulence energy, dissipative scales, and scales of time decrease 

noticeably from step to step. 

The dependence of ki/k on 1/Li is shown in Figure 9. It is in good agreement with the “-

5/3” law. 

In the judgment of the author, these results prove that in the present model ε reproduces just 

the rate of energy transfer to the cascade process. In other words, ε has a specific physical meaning, 

which cannot be said of the traditional models. In particular calculation of the cascade process by 

the Nagano–Tagawa model [18] showed that in this case, in development of the cascade process the 

vortices are shifted toward higher, rather that lower, wave-numbers. 
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Calculation of the boundary-layer flow with a large positive pressure gradient  

Model (11)-(12) was verified by calculations of the boundary-layer flow with a large positive 

pressure gradient (experiments of Samuel and Joubert [19]). Figures 10 and 11 present the results of 

calculations of the friction coefficient and the profiles uv  in three cross sections of the channel. The 

correlation uv  was calculated according to the Boussinesq hypothesis. The agreement with the 

experimental data is satisfactory (X streamwise coordinate, m).  
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Анотація 

 

Б.П. Головня 

 

Деякі систематичні помилки в моделюванні пристенной турбулентності і можливи 

шляхі їх подолання 

Всі моделі пристенной турбулентності жодного разу не відтворювають каскадний 

перенос енергії турбулентності. На думку автора, моделі погано враховують структуру 

пристенной турбулентності. Тому ці моделі не можуть відтворити правильно все процеси 

в турбулентному прикордонному шарі. Традиційні поправочні члени не можуть 

розглядатися як фізично розумне рішення цієї проблеми. В результаті існує багато 

турбулентних течій, які не піддаються модельованню. Ця стаття являє собою можливе 

пояснення труднощів, що виникають при розробці моделей турбулентності для розрахунку 

прикордонного шару. 

 

Ключові слова: турбулентний прикордонний шар, моделювання пристеночной 

турбулентності. 
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