
Approach to Evaluate Scheduling Strategies in 
Container Orchestration Systems 
Yevhenii Voievodin 

Department of Information Technologies 
Bohdan Khmelnytsky National University of Cherkasy 

Cherkasy, Ukraine 
yevhenii.voievodin@vu.cdu.edu.ua 

Inna Rozlomii 
Department of Information Technologies 

Bohdan Khmelnytsky National University of Cherkasy 
Cherkasy, Ukraine 

inna-roz@ukr.net 

Andrii Yarmilko 
Department of Automated Systems Software 

Bohdan Khmelnytsky National University of Cherkasy 
Cherkasy, Ukraine 

a-ja@ukr.net

Abstract—This article offers an in-depth examination 

of scheduling strategies in container orchestration 

systems, emphasizing the importance of selecting the most 

suitable strategy for a system's specific needs. The article 

explores the evolution of container systems and challenges 

around cloud reliability and fault tolerance. A structured 

experimental methodology was introduced to compare 

different strategies systematically, utilizing various testing 

methods like packing until first rejection, packing until 

the cluster is full, and introducing different malfunctions 

such as liveness and network partitioning. Comparative 

results between the “binpack” and “spread” strategies 

highlighted that while the former excels in higher 

scheduling requests acceptance rate, the latter is superior 

in offering higher availability. The findings show the need 

for aligning the scheduling strategy with system 

objectives, be it resource optimization, fault tolerance or 

other desired characteristics. 

Keywords—container orchestration system; 

Kubernetes; Docker; scheduling strategy; cluster resource 

utilization; availability; fault tolerance; resource 

allocation 

I. INTRODUCTION

Container orchestration systems (COS) are essential 
tools in modern computing environments due to their 
central role in efficiently managing and coordinating 
containerized applications. A container image is a self-
contained, immutable package that encapsulates an 
application’s code, runtime, libraries, and dependencies, 
ensuring consistent deployment across various 
environments [1]. Containers, in turn, are lightweight, 
portable, and isolated instances created from container 
images, facilitating the efficient utilization of system 
resources and ensuring application isolation. While 
Docker stands as one of the most widely recognized 
technologies for containerization [2, 3], it is important to 
note that several alternative containerization solutions 
exist in the ecosystem. 

One of the crucial parts of the COS is a scheduler. 
Its primary responsibility is to determine the optimal 
placement of containers within the cluster, which 

consists of nodes. Nodes represent physical computing 
resources, encompassing attributes such as available 
random-access memory (RAM), capabilities of central 
processing unit (CPU), and storage capacity. The 
complexity of placement optimization is heightened by 
the dynamic nature of both container attributes and the 
fluctuating quantity of containers to be deployed within 
a cluster. 

Among the commonly employed strategies are 
“binpack” and “spread” [4]. The “binpack” strategy 
aims to optimize resource usage by efficiently filling up 
a node with as many containers as possible before 
considering other nodes. This approach minimizes the 
initial use of cluster resources, as additional nodes are 
only brought into play once the initial set of nodes is 
fully utilized with containers. The “spread” strategy is 
designed to place containers on nodes with the greatest 
available physical resources, typically selecting the least 
occupied node within the cluster. This approach leads to 
the dispersion of containers throughout the cluster, 
enhancing the overall fault tolerance [5] and availability 
[6] of the deployed applications.

The presented strategies show which of the desirable
qualities might be expected when the scheduling 
strategy is selected to be used by COS. It’s worth noting 
that strategies can be more intricate than the ones 
outlined. For instance, a “spread” strategy could extend 
beyond selecting merely the least occupied node and 
instead aim to choose a node located on a distinct 
physical rack [7], further enhancing deployment 
resilience and fault tolerance. 

The following two use-cases for COS shed light on 
application deployment patterns that must be taken into 
account when selecting a scheduling strategy, along 
with the key metrics to consider. 

In the first use-case, an application is designed to 
allow users to execute custom-written code, such as an 
online integrated development environment (IDE) [8]. 
Containers prove advantageous in this context due to 
their inherent capacity to provide the requisite level of 
program isolation on individual nodes. Moreover, 

https://doi.org/10.31713/MCIT.2023.089 

mailto:yevhenii.voievodin@vu.cdu.edu.ua


Modeling, control and information technologies – 2023 

services like online IDEs often necessitate support for 
various technology stacks, rendering containers a 
suitable choice. A scheduling strategy such as “binpack” 
may be deemed advantageous for optimizing resource 
allocation during these brief program evaluations. 

In the second scenario, an online banking application 
employs a microservices architecture [9] consisting of 
200 microservices, each assigned a specific level of 
importance. To enhance system robustness, the COS 
deploys multiple instances of identical containers for the 
more critical microservices, thereby improving overall 
system availability. Given the intricate network of 
interdependencies among microservices, the primary 
concern revolves around fault tolerance. In this context, 
where the online banking platform strives for heightened 
availability, a scheduling strategy like “spread” proves 
more effective. 

II. RELATED WORKS

One of the first systems for large-scale cluster 
management was Google’s Borg. Borg provided tools 
for efficient, reliable management of applications in 
clusters. Burns et al. presented an insightful analysis of 
Borg, Omega, and Kubernetes, detailing lessons learned 
over a decade of container management at Google [10]. 
This work laid the foundation for Kubernetes, now a 
dominant COS in the field. 

Comprehensive analysis of fault tolerance in the 
cloud computing [11] that was done by Deepak K. G. et 
al. shows the variety of faults and mechanisms to 
prevent them in the cloud, which a typical environment 
for the COS based systems. The paper also covers the 
metrics of fault tolerance, such as: reliability, 
availability, usability etc. Authors make conclusion that 
there are still challenges associated with building fault 
tolerant systems. 

Machine learning techniques also have use-cases in 
the COS systems. Zhong Z. et al., describe idea behind 
using machine learning in scheduling algorithms [12] 
and provide comparison of different studies in the area 
of machine learning. Authors make conclusion that there 
is no systematic approach to build a complete machine 
learning-based optimization framework. Which implies 
the need to compare different machine-learning based 
algorithms effectively. 

III. KEY PERFORMANCE INDICATORS FOR SCHEDULING 
EFFICIENCY 

As previously discussed, the choice of scheduling 
strategy depends on aligning with specific attributes that 
hold significance for the COS-dependent system. The 
effectiveness of a scheduling strategy is contingent upon 
its ability to closely match these chosen attributes:  

 Cluster resource utilization. This metric
quantifies the efficient utilization of cluster
resources. It can be measured as the ratio of
used resources to the total resources available.
Often likened to fragmentation [13], higher
fragmentation levels are unfavorable as they
constrain the scheduler’s options and result in
underutilized resources.

 Container deployment density. The number of
containers deployed within the cluster is a
pivotal metric. Maximizing this number is
desirable, particularly for services reliant on
COS that prioritize serving a larger client base.

 Scheduling request satisfaction ratio. This
metric offers insight into how effectively
scheduling requests are fulfilled. It is calculated
as the ratio of rejected scheduling requests to the
total scheduling requests in the scheduler queue.

 Availability and fault tolerance. For systems
with stringent availability requirements, such as
online banking, high availability is paramount
and closely linked to fault tolerance.

IV. EXPERIMENT FRAMEWORK FOR STRATEGY 
EVALUATION 

The proposed methodology outlines a sequence of 
actions for collecting metrics and evaluating the 
efficiency of different strategies. An “experiment” 
represents a series of actions that are systematically 
applied to a particular cluster configuration and 
replicated across various strategies. The core objective 
of a concrete experiment is to determine which strategy 
best suits a given configuration, with all strategies 
following the same container sequence and cluster setup. 

Experiment consists of multiple iterations. Within a 
single iteration of the experiment, the following phases 
unfold: 

 Setup iteration phase. Prior to executing the
iteration, cluster instances must be created for
each tested strategy. Additionally, a stream of
scheduler requests is prepared. This stream is
essential for distributing identical requests to
different clusters, allowing different strategies to
schedule the same sequence of containers.

 Packing phase. During this phase, container
instances are placed within the cluster until
specific conditions are met. These conditions
are contingent on the packer’s configuration,
which will be detailed in subsequent sections.

 Packing results collection phase. After the
packing phase is completed, various data points
are collected, including metrics such as the
overall resource utilization or the number of
containers created. These data points are stored
in a shared storage repository for subsequent
analysis.

 Malfunction phase. If a malfunction is
configured, it is introduced to the cluster where
resources have been packed.

 Malfunction results collection phase. Similar to
the collection of packing results, this phase
focuses on specific aspects of availability or
fault tolerance in the presence of malfunctions.
The results are saved in the shared repository,
which is accessible across iterations.

Finally, upon gathering the raw data points, the 
experiment proceeds to compute the desired metric 



Modeling, control and information technologies – 2023 

values. Due to the raw nature of these data points, there 
exists a multitude of approaches for deriving the final 
metrics. These may encompass calculations such as 
computing averages, determining minimum or 
maximum values, and assessing percentile values. 

V. EFFICIENCY TESTING TECHNIQUES FOR
SCHEDULING STRATEGIES 

A. Halting at Scheduling Request Rejection

The decision of when to cease attempting to allocate
containers to the cluster is primarily determined by the 
packing algorithm, which relies on values generated by 
the scheduler requests stream. The “until first rejection” 
packing strategy halts its efforts to assign containers to 
the cluster as soon as it encounters its initial scheduling 
request rejection, indicating an insufficient allocation of 
physical resources for a particular container within the 
given cluster. 

Given that the packer is responsible for managing 
multiple strategies concurrently, the packing process 
halts for the specific strategy encountering the rejection 
while continuing for the others. This approach is 
instrumental in the experimental process, as it directs 
attention towards identifying a strategy capable of 
dynamically allocating resources in a manner that 
minimizes fragmentation and resource wastage, while 
aims to avoid schedule request rejections for as long as 
possible. In this particular context, the fundamental 
metrics for comparative analysis of strategies comprise 
the quantification of generated containers and the 
coefficient denoting resource utilization. Experimental 
iterations can be executed on clusters featuring distinct 
node sets.  

B. Full Cluster Utilization

The core concept behind the “pack until the cluster is
full” method is to prioritize maximum resource 
utilization by disregarding failures. It’s important to note 
that a cluster is deemed “full” when it lacks the physical 
resources necessary to accommodate a container 
configured with the most minimal requirements. The 
key idea is to stop packing phase after cluster cannot 
serve scheduling request with minimal possible 
requirements. Consequently, even with this approach, 
fragmentation may persist, as it hinges on the specific 
criteria defining those minimal requirements. 

The primary metrics for evaluation encompass the 
count of containers successfully allocated to clusters, 
where a higher count indicates better performance, as 
well as the ratio of successful scheduling requests to the 
total number of requests. The strategy that excels is one 
that efficiently places a greater number of containers 
with a high success rate. 

C. Liveness Malfunction

An application deployed within a container is
considered available when it can execute its core 
functions without degradation. Liveness testing is 
designed to assess both the availability of applications 
and the fault tolerance characteristics of scheduling 
strategies. This is achieved by simulating real-world 

hardware issues that occasionally occur in data centers, 
such as node or rack failures [14]. 

As previously mentioned, there are various 
deployment methods in COS. In some cases, a single 
application container is duplicated two or more times to 
ensure that if one instance experiences problems, the 
others can continue to perform the application’s core 
functions. 

The algorithm for testing availability is relatively 
straightforward: specify a percentage of nodes to be 
deliberately taken offline, randomly select nodes within 
the cluster for removal, and then assess how many 
applications remain available. By repeating this process 
multiple times, as suggested by the experiment’s 
lifecycle, a comprehensive understanding of availability 
properties can be obtained. 

D. Network Partition Malfunction

Certain applications, like the online banking
microservice system used as an example previously, rely 
on network communication. In such cases, these 
applications become inaccessible if any of their direct or 
transient dependencies experience downtime. In this 
context, a direct dependency is one that an application 
container directly utilizes to fulfill specific functions, 
while a transitive dependency is one that the application 
container relies on indirectly through its direct 
dependencies. 

The malfunction is engineered to disrupt network 
connections between specific nodes within clusters. 
After a predetermined number of connections are 
severed, the collector can calculate how many 
applications remain accessible. It’s important to note 
that an application is considered available if all of its 
dependencies are reachable within the isolated network 
partition [15]. Additionally, the container that directly 
depends on the container being assessed for connectivity 
must itself be accessible through a direct connection to a 
node, simulating a scenario akin to client-side load 
balancing, where the first container attempts to connect 
to one of the known nodes. The same principle applies 
to other dependencies of other containers. 

VI. EXAMPLE OF STRATEGIES COMPARISON

In the first example, the “pack until full” packing 
algorithm is applied. Containers in this scenario specify 
only their RAM requirements in Gigabits (GiB). The 
stream generates random containers in the following 
sequence with associated probabilities: 1 GiB, 2 GiB, 3 
GiB – 50%; 5 GiB, 6 GiB – 33%; 8 GiB, 16 GiB – 12%; 
32 GiB – 5%. No malfunctions are introduced into this 
experiment. Two strategies are under evaluation: 
“binpack” and “spread”. The experiment is repeated ten 
times, each time with an increment of ten nodes in the 
cluster. Fig. 1 illustrates the containers creation create. 
The experiment result implies that “binpack” is 
preferable when aiming for a higher scheduler 
acceptance rate. 

In the second example, the “pack until first 
rejection” algorithm is used. The stream configuration 
remains the same as in the previous example, except that 



Modeling, control and information technologies – 2023 

each container is deployed twice. Additionally, this 
experiment introduces malfunctions by killing 20% of 
random nodes. Fig. 2 illustrates the application survival 
rate (the percentage of applications that continue to 
function), which is notably higher, surpassing 10%, in 
favor of the “spread” strategy. 

Figure 1.  Containers creation rate chart 

Figure 2.  Applications survival rate chart  

VII. DISCUSSIONS

The evolution and growth of COS have opened a 
new frontier for large-scale application deployment and 
management. While the introduced experimental 
framework is comprehensive, real-world scenarios may 
introduce complexities not captured in our controlled 
environment. For example, variable network latencies, 
hardware discrepancies, and unpredictable workloads 
could influence the effectiveness of a chosen strategy. 
The framework can be extended to include more 
performance indicators and testing methods. This 
includes integrating metrics that are specific to certain 
types of schedulers. For instance, there might be metrics 
unique to prediction-based algorithms. While this 
narrows the range of strategies being examined, it 
provides additional data to make more informative 
strategy selection decision. Sharing the findings with the 
broader community could lead to collaborative 
improvements and innovative solutions. 

VIII. CONCLUSION

One of the central findings of this article is the 
critical importance of scheduling in COS systems. The 
efficiency of an application can be greatly impacted by 

the chosen scheduling approach, with strategies like 
“binpack” and “spread” demonstrating that the optimal 
method varies based on context and workload.  

Thorough testing, especially in scenarios that mimic 
network partitions and other malfunctions, is important. 
Such a testing framework exposes key characteristics of 
different strategies and helps to select the most suitable 
strategy for a specific application. Looking ahead, as 
applications continue to increase in complexity, the 
influence and utility of COS will only increase. 
Innovations, particularly those involving machine 
learning, could lead to a new era of COS schedulers. 

This journey through COS scheduler has provided 
valuable insights. However, it’s essential to underline 
that this article represents just a fragment of the 
potential knowledge. Collaboration on a global scale 
will be the key to unlocking the next stages of 
advancement in container scheduling algorithms. 

REFERENCES 
[1] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, 

and J. Wilkes, “Large-scale cluster management at Google with 
Borg,” in Proceedings of the tenth european conference on 
computer systems, 2015, pp. 1-17. 

[2] C. Anderson, “Docker [software engineering]”, Ieee
Software, vol. 32(3), 2015, pp. 102-c3.

[3] A. Mouat, “Using Docker: Developing and deploying software
with containers,” O'Reilly Media, Inc., 2015.

[4] C. Cérin, T. Menouer, W. Saad, and W. B. Abdallah, “A new 
docker swarm scheduling strategy,” in 2017 IEEE 7th 
international symposium on cloud and service computing (SC2), 
IEEE, 2017,  pp. 112-117. 

[5] P. Kumari, and P. Kaur, A survey of fault tolerance in cloud 
computing, Journal of King Saud University-Computer and 
Information Sciences, vol. 33(10), 2021, pp. 1159-1176. 

[6] M. Nabi, M. Toeroe, and F. Khendek, “Availability in the 
cloud: State of the art,” Journal of Network and Computer 
Applications, vol. 60, 2016, pp. 54-67.

[7] K. Senjab, S. Abbas, and N. Ahmed, “A survey of Kubernetes
scheduling algorithms,” Journal of Cloud Computing, vol.
12(1), 2023, pp. 1-26.

[8] S. Bartkova, “Research of online IDE and analysis of directions 
of development,” 2021 [Card-file ontu.edu.ua]. 

[9] S. Newman, “Building microservices,” O'Reilly Media, Inc. 
2021.

[10] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes,
“Borg, Omega, and Kubernetes: Lessons learned from three 
container-management systems over a decade,” Queue, vol. 
14(1), 2016, pp. 70-93. 

[11] D. K. Gaur, and A. Mahalkari, “Comparative Analysis of Fault
Tolerance Techniques in Cloud Computing,” International 
Journal of Computer Science and Information Technologies
(IJCSIT),  vol. 11(4), 2020, pp. 59-64. 

[12] Z. Zhong, M. Xu, M. A. Rodriguez, C. Xu, and R. Buyya,
“Machine learning-based orchestration of containers: A 
taxonomy and future directions,” ACM Computing Surveys
(CSUR), vol. 54(10s), 2022, pp. 1-35. 

[13] A. Silberschatz, P. B. Galvin, and G. Gagne, “Operating System
Concepts,” 10th. ed., John Wiley & Sons, Inc, 2018. 

[14] S. M. Ataallah, S. M. Nassar, and E. E. Hemayed, “Fault
tolerance in cloud computing-survey,” in 2015 11th 
International computer engineering conference (ICENCO) , 
IEEE, 2015, pp. 241-245. 

[15] M. Kleppmann, “Designing data-intensive applications: The big 
ideas behind reliable, scalable, and maintainable systems,” 
O'Reilly Media, Inc., 2017.




