
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/2 (123) 2023

26

of these studies are of an evaluative nature and do not allow
obtaining specific data for correcting the models.

Conducting static and dynamic analysis on a single
model is also relevant for already developed software, which
requires analysis of implemented solutions to improve the
effectiveness of its support. Such an analysis should be
carried out based on the results of failures or non-standard
functioning of software tools recorded during maintenance.
The research approaches and tools should be adapted to the
simulation of the implemented software, which involves a vi-
sual check of the model for compliance with the implemented
code, and also allows automated analysis of its static and
dynamic properties, determining the localization of defects.
This will reduce software maintenance costs.

2. Literature review and problem statement

When designing software systems, various approaches
and methods are offered, which are aimed at increasing
the reliability of software operation. Thus, to reduce the
complexity of the developed systems, aspect-oriented pro-
gramming [1] is used, which also makes it possible to involve
previously developed modules for their reuse. In this tech-
nological approach, modular functionality is separated from

IMPROVING THE

EFFICIENCY OF

DYNAMIC ANALYSIS

OF THE COMBINED

SIMULATION MODEL

FOR SOFTWARE WITH

PARALLELISM

O k s a n a S u p r u n e n k o

Corresponding author

PhD, Associate Professor*

E-mail: ra-oks@vu.cdu.edu.ua

B o r y s O n y s h c h e n k o

PhD, Associate Professor*

J u l i a G r e b e n o v i c h

Senior Lecturer*

*Department of Software for Automated Systems

The Bohdan Khmelnytsky National University of Cherkasy

Shevchenko blvd., 81, Cherkasy, Ukraine, 18031

Software design uses the set of tools for building and
analyzing models which do not allow solving the complex
problem of improving the quality of design solutions. This
task includes not only the synthesis of the software model with
parallelism, the detection and localization of errors for the
correction of the model, but also the visual analysis of the model
for the synthesis of new or corrected design solutions. The
study object is the building and analyzing processes of software
models with parallelism.

Techniques and a method‘s of synthesis and analysis of
the software model with parallelism are proposed, which are
based on the combined approach to simulation modelling of the
systems with parallelism. The analysis of the software model
with parallelism begins at the stage of creating and static
analyzing component models. The proposed method provides
dynamic analysis of component models and partial model in the
process of assembling the complete software model.

Building of component models is carried out based on the
rules for building PN-models, PN-templates and the principle of
structural similarity, while their static properties are checked.
The dynamic analysis of the component models of software
is carried out using simulation modeling and the method of
invariants. In process of the model assembling, the complete
model is gradually formed by assembling it from the models of
software components, and its dynamic properties are analyzed.
In this case, the convolution method, the method of invariants,
and simulation modelling are used.

Through in-depth dynamic analysis the presented method‘s
provides an opportunity to check the static and dynamic
properties of the studied models, which ensures an increase in
the quality of project solutions at the software design stage. It
can be used to reduce the cost of software development, as well
as to analyze the developed software to improve the efficiency
of support

Keywords: software with parallelism, Petri nets, critical
properties, synthesis of software model, dynamic analysis

UDC 004:942

DOI: 10.15587/1729-4061.2023.283075

How to Cite: Suprunenko, O., Onyshchenko, B., Grebenovich, J. (2023). Improving the efficiency of dynamic analysis of the com-

bined simulation model for software with parallelism. Eastern-European Journal of Enterprise Technologies, 3 (2 (123)), 26–34.

doi: https://doi.org/10.15587/1729-4061.2023.283075

Received date 03.04.2023

Accepted date 16.06.2023

Published date 30.06.2023

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

1. Introduction

The high complexity of modern software requires a
detailed analysis of project solutions, which calls for the
development of software modeling approaches, methods,
and tools [1]. In particular, the complexity of the software
is due to the presence of explicit or hidden parallelism with
numerous options for embedding or crossing parallel branch-
es in the model structure. This can cause errors in software
development, which makes the design, development, and
maintenance of software systems more expensive. To ensure
high performance indicators of software models, along with
structural analysis at the stage of software design, it is neces-
sary to conduct their dynamic analysis [2], which will reduce
development time and reduce its costs.

To carry out these types of analysis, several models are
used [3], which are built with the use of various means of
describing models. Certain properties are analyzed on each
of these models. The lack of a single model of the studied
software causes difficulties, which are associated with the
need to reconcile the results obtained on different models.
With such an analysis, it is difficult to form a holistic view
of the functioning of the software under the influence of
various factors. Some models use classifiers built on the basis
of statistical data to predict software defects [1]. The results

Information technology

27

Thus, in the reviewed studies, solutions are proposed to
increase the reliability of software functioning, when using
which it is impossible to comprehensively solve the problem
of detecting dynamic errors in software models and their
localization. Also, only part of the models can be used for vi-
sual analysis of project solutions, in particular models based
on WF-networks [5]. But they do not have the necessary
power of visual representation of software models with par-
allelism. This leads to the need for a complex and large-scale
analysis of the model to make corrections, which cannot be
applied under the conditions of the implementation of mod-
ern software projects. Some modern approaches consider the
construction of software models based on actual software
development methods [10] or on the basis of already written
code [6], but they cover only part of the tasks – the tasks of
model synthesis [10] or their analysis [6]. In other works, it
is proposed to combine model-oriented methods with well-
known software development methods [11], but they are
based on multiple models, which significantly complicates
the solution of the tasks.

Therefore, there is a need to develop methods that allow
studying the behavior of software based on a single descrip-
tion (model) in any possible variants of functioning, taking
into account obvious and hidden errors in the software. It is
also important to solve the problems of localization of model
areas for the analysis of detected errors and construction of
options for their elimination.

3. The aim and objectives of the study

The purpose of this study is to improve the efficiency
of the dynamic analysis of the combined simulation model
of the software with parallelism. To achieve the goal of the
current research, the following tasks were solved:

– development of a technique of localization of critical
properties of the model in case of full coverage of all elements
of the model with component invariants;

– determination of the features of the analysis of parallel
processes when building simulation models, taking into
account the context of the problems for which the model is
being developed;

– development of the method‘s for the synthesis and
analysis of a combined simulation model of a software system
with parallelism based on a combined approach of simulation
modeling of systems with parallelism and developed tools.

4. The study materials and methods

The object of our research is the process of building and
analyzing models of software systems with parallelism. The
subject of the study is the dynamic properties of software
systems with parallelism and their components in the pro-
cess of assembling component models into a complete model.

Research hypothesis: when applying the synthesis and
analysis procedure of the combined simulation model of
software systems with parallelism, it is possible to identify
obvious and hidden errors in the functioning of software
components and to determine their localization.

It is proposed to use a combined approach to simulation
modeling of systems with parallelism [12]. But its linear use
does not always lead to the desired result. Therefore, it is
proposed to devise a technique for solving uncertain situa-

end-to-end functionality of the developed software system.
At the coding stage, evaluations of the metrics of linguistic
means and topology complexity are used, a set of classifiers
is used [1]. They make it possible to reduce the amount of
code and improve functional decomposition. But this ap-
proach has only evaluative tools for project analysis, and also
complicates the code and its analysis during testing [1]. The
application of this approach covers the stages of coding and
testing, which narrows the possibility of detecting hidden
errors at the early stages of software design and determining
the localization of these errors in the model. Therefore, the
problem of synthesis of new or corrected project solutions
cannot be solved using the considered approach.

To analyze project solutions at the software design stage,
numerous models are used, designed to improve the quality
of software product development. But several models are
often built to represent different aspects of the software
tool [3], or local models are formed that cover only certain
characteristics of the software and do not provide means for
visual analysis and correction of the model. In particular,
great interest is attached to the algebra of processes, in
which the technology of “block modeling” is used [4]. That
makes it possible to determine the structure of the model
and the nature of the interaction of its components at the
upper level, and at the lower level to describe the algorithms
for processing the workload by individual components of
the model [4], which increases the adequacy of modeling.
But for the dynamic and visual analysis of systems during
their design, this tool is difficult since actions are modeled
explicitly, and states are implicitly modeled [5]. The tasks of
explicit representation of actions and states are solved when
building models based on workflow networks (WF-net-
works) [5], but these networks are the most limited class of
Petri nets. This does not allow them to be used for modeling
software with parallelism. A more powerful class of models
is used in [6], in which a marked system of transitions and
a marked Kripke structure are used to build models from
attribute-based code. This approach requires software code
input, that is, it can be used to diagnose existing software
and its components.

In [7], statistical models of the reliability of complex
technical systems are built, which make it possible to deter-
mine the time dependences of the time of the studied model
in a state of failure, but these models do not allow detecting
areas associated with failure. Models are also being devel-
oped [8], which are used to assess the quality of current
software characteristics. But the evaluation characteristics
do not allow their use for error localization and correction of
models of the evaluated software.

Instead, in the models of sustainable computing [9], the
criteria of stability of critical applications are considered,
as well as the search for hidden errors is carried out. But in
these studies, only part of the external influences is consid-
ered – from natural disturbances, which limits the options
for analyzing the functioning of software models.

Study [10] considers the construction of a software mod-
el based on component-oriented modeling but does not pro-
pose a holistic approach that would allow solving not only
the problem of synthesis but also the problem of analyzing
the software model. Paper [11] proposes a combination of
model-based engineering and component-oriented software
engineering. It is aimed at overcoming the problem of the
complexity of modern software systems, but the authors use
several models, which causes difficulties in their combination.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/2 (123) 2023

28

tions in the problem of localization of critical model proper-
ties, a model correction technique in the analysis of partially
connected parallel processes, and the method‘s in which the
proposed techniques will be used.

In order to increase the effectiveness of the combined
approach to simulation modeling of software with parallel-
ism [12], it is necessary to take into account the peculiarities
of the construction and dynamic analysis of simulation mod-
els of software components when developing the method‘s for
the synthesis and analysis of a combined simulation model
of a software system with parallelism. Also, the method‘s
should take into account the peculiarities of the study of
static and dynamic properties of components on artificially
closed models. The procedure must be adapted to the limita-
tions of the dimensionality of the invariant method [13]. Our
theoretical research used:

– the theory of formal languages of Petri nets [14], which
formed the basis of tools for forming a simulation model of a
system with parallelism, including PN-patterns [15], which
increase the efficiency of building models;

– the architecture of the combined approach to simula-
tion modeling of systems with parallelism [12];

– the principle of structural similarity [12], which allows
the researcher to understand the logic of errors and changes
when correcting the model;

– a technique for synthesizing software component mod-
els [15], which makes it possible to observe static proper-
ties [16] when building a component structure from PN-el-
ements and PN-patterns, to display on this structure the
peculiarities of the functioning of the model using dynamic
labels;

– dynamic properties of liveliness, limitation, repeat-
ability, preservation, conflictlessness, and controllability [2]
of software models and their components, compliance with
which will ensure the expected functioning of the models;

– the method of invariants, which makes it possible to
calculate T- and S-invariants and determine by their ele-
ments whether the dynamic properties of the studied model
are observed;

– a technique for assembling a software model from mod-
els of its components and using the convolution method [17],
which is presented and illustrated in [18].

Convoluting the sections of component models makes it
possible to reduce their dimensionality due to linear sections
and sections without critical properties. This provides an
opportunity to apply the invariant method not only for dy-
namic analysis of software component models but also for in-
depth dynamic analysis of partial and full software models.

To build and conduct an in-depth analysis of software
models, a combined approach to simulation modeling of
systems with parallelism is proposed [12], which involves
building a model of a software tool based on a Petri net.
The specified model has an unambiguous mathemati-
cal notation, which allows analyzing static and dynamic
properties analytically. Also, the model is built according
to the principle of structural similarity, which allows for
visual analysis during the construction of the model and
its simulation modeling. This is important [12] both when
designing software components and when assembling them
into a complete software product, as well as when analyzing
the implemented software.

But with the linear application of the combined ap-
proach, it is not always possible to determine the localization
of the critical elements of the model. Therefore, this paper

proposes a procedure of synthesis and analysis of a combined
simulation model of a software tool, which uses a technique
that involves simulation modeling to detect “surface” errors
and build a matrix description of the model. The matrix de-
scription allows for an in-depth analysis of the model based
on the verification of dynamic properties: liveliness, safety
(limitation), repeatability, preservation, conflictlessness,
and controllability [2].

The proposed procedure is based on the architecture of a
combined approach to simulation modeling of systems with
parallelism [12], which involves the use of tools based on
formal languages of L-type Petri nets with G-type language
elements [14]. The choice of an L-type formal language is due
to the fact that it is closed with respect to merging, parallel
composition, and regular substitution, which is very import-
ant for software modeling problems.

Complementing the formal L-type language with ele-
ments of the G-type language allows working with interme-
diate markups when analyzing the model. Also, the use of
G-type language elements provides an opportunity to ana-
lyze the local components of the model and the correctness of
their merging into partial sub-models, which, upon further
assembly, make up a complete model of the software tool.

5. The results of research on improving the efficiency
of dynamic analysis of software system models with

parallelism

5. 1. The technique for determining the localization of
critical properties of the model in non�obvious cases

In the combined approach to simulation modeling of sys-
tems with parallelism, it is assumed to build a model based
on Petri nets, which are described in the formal language
of L-type Petri nets with G-type language elements [14].
To localize critical properties in systems models with par-
allelism, T- and S-invariants are used, as well as the rank
of the incidence matrix W. The vertices associated with
critical properties (violation of liveliness, limited, repeat-
ability, preservation, conflictlessness) are indicated by the
coverage of certain elements of T- and S-invariants only
by zero values. Non-observance of the complete controlla-
bility property is indicated by a violation of the equation
rang(W)=min(|T|,|S|) [2].

The rank of the incidence matrix W makes it possible, in
addition to the dynamic properties, to determine the com-
plete or incomplete controllability of the model, which in
practice means the predictable or incompletely predictable
functioning of the model. When determining the incomplete
controllability of the model by the rank of the incidence
matrix, in cases of complete coverage by the elements of the
invariants of all components of the model [13], there is a need
to determine the localization of logical errors in the elements
of the model. The proposed technique makes it possible to
determine the elements of the model that provoke incom-
plete controllability, guided by the markings specified in the
S-invariants and simulation modeling of the studied model.

In the test model (Fig. 1) with the initial markup
μ0=[1 0 0 0]T, the properties of liveliness, limitation, and
repeatability (according to the T-invariant), properties of
preservation and conflictlessness (according to the S-in-
variant) are observed. But the rank of the incidence matrix
rang(W)<4 [13] indicates the possibility of unpredictable
functioning of the model.

Information technology

29

To determine model vertices that cause unpredictable
behavior, we use the following technique. When setting the
initial markup indicated by the S-invariant S=[5 2 1 1]T and
conducting a simulation experiment using sequences differ-
ent from the counter of transitions vertices displayed by the
T-invariant, we arrive at the markup μ53=[0 0 0 31]T, which
makes it possible to discover a hidden dead end.

According to this marking, the localization of the dead
end is determined, which is obviously related to the vertices
of the place p4. In this vertex, there is an accumulation of
labels, which leads to the appearance of a deadlock.

5. 2. Peculiarities of the analysis of parallel processes
when building models of systems with parallelism

The general logic of the functioning of the modeled
system should be supplemented by an analysis of the tasks
solved by this system. Some features of the model cannot be
detected when using a combined approach [12].

For example, in Fig. 2 shows a version of the functioning of
the model, which reflects the execution of three tasks, which
does not depend on the order of their execution. The model
variant (Fig. 2) does not have critical properties that indicate
the need to correct the model. But, when there are restrictions
on the functioning of the modeled system, for example, it is
necessary that some task B be performed only after the task A
is performed, the analyzed model needs to be corrected. One
of the variants of such a correction is shown in Fig. 3.

Fig. 2. Model with nondeterministic order of task processing

Fig. 3. A model with a partially ordered order of task processing

Thus, this analysis of the software system model should
be carried out not only with the use of simulation modeling
since formally the first model (Fig. 2) corresponds to dy-
namic characteristics. To find out the specifics of the task,
it is necessary to analyze the business processes and their
limitations reflected in the model. The example (Fig. 3) shows

the process of taking into account the limitation in the order
of tasks. To take it into account, it is necessary to display the
partial dependence of the order of tasks in the model. In order
to effectively solve such problems, a deeper analysis of the
features of the model’s functioning is required in terms of the
implementation of the functioning of each of the business pro-
cesses that are provided for by the conditions of the problem.

5. 3. Method‘s of synthesis and analysis of a combined
software simulation model with parallelism

Our procedure of synthesis and analysis of the combined
simulation model of software with parallelism is aimed at
increasing the efficiency of dynamic error detection in models
of software systems with parallelism and models of their com-
ponents. It also makes it possible to determine the elements
of the models with which the identified errors are associated.
The method‘s devised has a number of stages (Fig. 4). At the
initial stage of construction, the software model is represented
as a “black box”. This makes it possible to focus on the input
parameters for the current simulation, as well as the output
parameters and/or system properties that are expected to be
obtained or need to be verified. Input parameters can be di-
vided into initial parameters and control signals. Directly set
initial parameters are used to run the model, this is the initial
markup. Control signals or data from external systems, the
arrival of which occurs under an asynchronous mode and is
modeled by the corresponding parameters in the control vec-
tors ,iX are used to study external influences on the dynamic
properties of the model. Therefore, the “default” mode is pro-
vided for the vertices of the model, where the control vectors
can be configured. This mode at the initial stage of modeling
makes it possible to build and debug a model without control
influences or with deterministic (preset) control influences.

To form the structure of the model of the software tool
with parallelism, the principle of “block modeling” is used,
which is also used in process algebra [4]. This principle is
the basis for component-oriented modeling [10], according
to which an architectural solution is built. This decision
reflects the division of the model into components and the
determination of the general order of their interaction. At
the lower level of the structural structure, the implementa-
tion model of each component is described in detail, which is
close to the algorithmic description.

The proposed procedure of synthesis and analysis of
the combined software simulation model allows for a step-
by-step description [18] and automated analysis of such
solutions [13] to check the dynamic properties of the model
under study and its correction. This is the principle of block
modeling, used in process algebra [4] and hierarchical Petri
nets [16, 19]. It makes it possible to organize step-by-step
detailing of the model in the modeling process, as well as
the reverse process of convolution of the model components,
which creates favorable conditions for the analysis of a par-
tially assembled model by the invariant method.

The closed nature of formal languages of Petri nets to
finite substitution [14] creates a favorable basis for the use of
PN-patterns [15] and enlarged submodels in the synthesis of
models. This speeds up the construction of the model and its
visual inspection, for example, for the presence of “hanging”
vertices. Solvability of analysis problems by the invariant
method for restricted Petri nets without loops [2] and with-
out inhibitory arcs [20, 21] allows for automated analysis
of submodels built on their basis and partially connected
models of software tools with parallelism.

Fig. 1. Test model with hidden dead end [13]

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/2 (123) 2023

30

At the initial stage, input data is formed for the applica-
tion of the proposed method‘s. The goals and objectives of
model research, the formation of requirements for the model
and the preliminary architectural solution are determined.
Before starting the construction of the model, it is neces-
sary to clearly formulate the purpose and tasks of the model
research, analyze its features, and form an architectural
solution:

0.1) conduct an analysis of the goal and tasks, determine
the formalized requirements for the model, carry out their
decomposition, the result of which will be a preliminary
description of the components;

0.2) form a preliminary model of the architecture and/
or select an appropriate architectural pattern in which to
define the basic components and relationships between the
components of the model.

At the first stage, a detailed representation of the model
and debugging of its elements (Petri net elements and pat-
terns) is built. When building submodels, it is necessary to
step by step detail the solution, which involves:

1.1) step-by-step construction of submodels (model com-
ponents) and, if necessary, their decomposition; when detail-
ing submodels, it is worth determining the degree of decom-
position, which depends on the complexity of the system,
which is important for complex systems with parallelism; at
this stage, we take into account the features of model refine-
ment, considered in clause 5.2;

1.2) description of submodels of formed components us-
ing PN-patterns and elements of combined Petri nets; when
building submodels, the static properties of Petri nets are
checked, which contributes to the ongoing elimination of
errors and inaccuracies;

1.3) correction the characteristics of the model elements
and applied patterns, visual analysis of the logic displayed in
the submodel and establishing the initial markup.

At the second stage, simulation modeling and invariant
analysis of dynamic properties of submodels are carried out:

2.1) simulation modeling of the submodel with initial
settings and initial marking; if necessary, making changes to
the settings and markup of the submodel;

i

Fig. 4. Activity diagram of the method‘s of synthesis and analysis of the software tool model with parallelism

Information technology

31

2.2) formation of a matrix description of the built sub-
model and calculation of invariants;

2.3) analysis of invariants, if necessary – making chang-
es to the structure of the submodel/partial model and/or
changing its initial settings;

2.4) repeated simulation modeling of the submodel and
verification of its expected functioning under different work
scenarios (using initial and intermediate markings)/simu-
lation modeling of a partial model with different markings;

2.5) if there is a need to correct the submodel/partial mod-
el, return to the beginning of the second stage, i. e., step 2.1.

After the successful completion of the simulation model-
ing of the submodels, the system model is recomposed with
parallelism [22, 23] and the intercomponent relationships
are analyzed. To do this, we begin to assemble a model from
the most complex submodel [24], to which, by sequential
addition, we connect one adjacent submodel at a time and
carry out their simulation modeling and analysis of invari-
ants (Fig. 4).

If the architecture of the system is complex, then the
recomposition of the model begins with the most complex
submodel in each architectural component of the upper
level [24]. At the next stage, we combine the formed and
debugged components and, as a result, conduct a simula-
tion of the entire model of the software tool. Thus, when all
submodels are formed, assembling a software model with
parallelism involves:

3.1) step-by-step recomposition of a partial model from
submodels, taking into account inter-component connec-
tions in the system and external influences (in settings);

3.2) simulation modeling of assembled model compo-
nents after each connection of a new submodel to a partial
model;

3.3) in the event of conflicting situations during model-
ing (suspensions or clearly exceeded operating time of the
model), preparation for the analysis of a partial model by
its convolution to reduce the number of its elements pi and
ti to 40–45 (the maximum dimension of the incidence ma-
trix W) [13, 25] thanks to the convolution of the elements of
the detailed representation of adjacent submodels [17] and
the formation of a partial model for analysis;

3.4) formation of a matrix description of the constructed
partial model and calculation of invariants;

3.5) analysis of invariants, if necessary, making changes
to the structure of the partial model and/or changing its
initial settings;

3.6) re-starting the simulation of the partial model and,
in case of its successful completion, moving to the next stage
of recomposition (3.1).

The final stage of model research is simulation modeling
of it in a fully assembled form. During simulation, it is pos-
sible to control the main scenarios of use of the developed
software model and the liveliness of its elements in these
scenarios. A deeper analysis of the model is carried out on
the basis of a matrix representation of its final recomposi-
tion. T- and S-invariants are calculated using the method of
invariants, which determine the properties of reachability,
repeatability, limitation, preservation, and conflictlessness.
We also calculate the rank of the model’s incidence matrix,
which determines the controllability property. This property
indicates the possibility of sequentially changing the mark-
ings from the initial one to the one determined in accordance
with the researched tasks [26], and the subsequent cor-
rect (predictable) continuation or completion of the model.

This procedure is expected to be used under condi-
tions where all elements of the invariants are covered by
non-zero values, and the rank of the incidence matrix is
rang(W)<min(|T|,|P|). In this case, we determine the dif-
ference between min(|T|,|P|) and r rang(W), if (rang(W) –
min(|T|,|P |)=1, we apply the technique of determining criti-
cal properties described in clause 5.1. If the specified method
indicates the vertices of the artificial closure of the model
(for the calculation of invariants), then it is necessary to
continue the assembly of the partial model. This is due to the
peculiarities of the artificial closure of the partial model [18],
which can cause a slight decrease in rang(W).

Using the example of the software model of the micros-
ervice of video calls from work [18], the static and dynamic
analysis of the initial model is illustrated, which was divided
into three submodels, as well as the process of gradual assem-
bly of the model with verification of the dynamic properties
of the partial and final models.

The initial microservice model had a dimensionality of
|T |=31, |P |=24. During its construction and initial simulation
modeling, the static properties of the model were checked.
According to the results of the dynamic analysis, the verti-
ces associated with the violation of the dynamic properties
were detected. In two peaks of the transitions, a violation
of the liveliness property is observed; in the two vertices of
places – violation of the preservation property. For further
analysis, the model was divided into three component mod-
els (submodels). The first submodel reflected the processes
of preparing for a video communication session, the second –
the processes of processing erroneous user requests, the
third – the processes of making a video call.

During the analysis of the first submodel, vertices as-
sociated with the violation of the liveliness property were
found. According to the results of re-analysis of the correct-
ed first submodel, compliance with the dynamic properties
of liveliness, repeatability, limitation, and preservation was
confirmed.

In the second submodel, duplication of function was found.
After eliminating the detected errors, the number of its ele-
ments decreased from 26 (|T |=16, |P |=10) to 22 (|T |=14, |P |=8),
i.e., by 15 %. The invariant analysis of the corrected second sub-
model confirmed its compliance with the dynamic properties of
liveliness, repeatability, limitation, and preservation.

The third submodel in the invariant analysis showed
compliance with all dynamic properties. In the process of
assembling the model from submodels, certain areas of the
submodels were convoluted, which ultimately led to a re-
duction in the dimensions of the microservice model from
33 vertices to 55, i. e., by a third. It also corresponds to the
properties of liveliness, repeatability, limitation, preserva-
tion and full controllability, which increases the quality of
project solutions.

During the study of submodels, violations of the rank
indicators of the incidence matrix were observed, that is,
rang(W)<min(|T |,|P |), which was caused by the artificial
closing of submodels for the purpose of calculating their
T- and S-invariants. When assembling a partial model from
submodels, the rang(W) values approached the values of
min(|T |,|P |) to which they should correspond. When analyz-
ing a complete microservice model rang(W)=min(|T |,|P |),
which corresponds to full controllability of the model. The
solution obtained on the model [18] can be used to increase
the reliability of the functioning of the studied software im-
plementation of the microservice of video calls.

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/2 (123) 2023

32

6. Discussion of the research results of synthesis and
analysis of the combined simulation model of software

systems with parallelism

When building and analyzing models of systems with
parallelism, there are cases in which the application of a
combined approach to simulation modeling of systems with
parallelism [14] should be carried out with the involvement
of a technique of solving the problem of error localization in
uncertain cases. This happens when all elements of the mod-
el are covered by non-zero elements of T- and S-invariants,
but the rank of the incidence matrix is less than the mini-
mum power of one of the sets of vertices of the Petri net [2].
Such a case indicates the incomplete controllability of the
built model, while it is impossible to clearly determine which
vertices of the model lead to its incomplete controllability
based on the invariants. To solve this problem, this paper
proposes a technique that uses simulation modeling with
a markup that corresponds to one of the S-invariants, but
violates the sequences displayed in the T-invariant, as shown
in Fig. 1. The final marking obtained during simulation
modeling indicates the critical vertices.

It is also important to take into account partial depen-
dences between processes and their permanent or temporary
nature when building or correcting a system model with
parallelism (within the proposed approach [12]). Therefore,
in the process of building and preliminary analysis of the
software model, it is necessary to take into account the con-
text of the tasks it solves because it affects the way the model
is built, as shown in Fig. 2, 3. Such an analysis is complexly
formalized and is not performed under an automated mode,
but the obtained solutions can be checked using a combined
approach [14].

To combine the combined approach to simulation model-
ing of systems with parallelism and techniques of error local-
ization in uncertain cases and construction (correctment) of
the researched model, a procedure of synthesis and analysis
of the combined simulation model of software with parallel-
ism has been developed. Important when using this proce-
dure is the formation and analysis of a simulation model on
a single representation, which is displayed by a Petri net and
uniquely described mathematically [12]. This simplifies the
analysis of a partial and final model of a software tool [18]
in comparison with procedures that use several models with
different means of description to check certain groups of
properties [3].

When assembling a software model from submodels of its
components, the dimensionality of the resulting partial mod-
el increases rapidly. This complicates the application of the
invariant method, as demonstrated by the example in [18].
To reduce the dimensionality of the model, the convolution
method [17] is used, which makes it possible to leave essen-
tial elements related to parallelism in the model.

As a result of the complex solution of the task of re-
searching the static and dynamic properties of the com-
bined simulation model of software systems with parallel-
ism, a procedure of synthesis and analysis of the model of
the software tool with parallelism was developed (Fig. 4).
The proposed procedure is based on a combined approach,
which allows combining the advantages of simulation
modeling and analytical research to identify explicit and
hidden dynamic errors. It also uses additional proposed
techniques of synthesis and analysis of software models,

which make it possible to expand the options for applying
the combined approach to simulation modeling of systems
with parallelism.

The limitations of the proposed method‘s primarily in-
clude the dimensionality of the studied models, which, as in
the combined approach to simulation modeling of systems
with parallelism, can be no more than 40‒45 elements of the
largest set of sets of vertices P or T (max(|T |,|P |) [12].

Another important limiting aspect of the analysis
of the model with parallelism is taking into account the
peculiarities of the problems solved by the model. Thus,
when analyzing the main conflict situations, the model
should pay attention not only to the general logic of the
simulated system but also to the specifics of the tasks
solved by this system, for example, as shown in Fig. 2, 3.
Such features cannot be detected automatically by the
presented procedure.

The disadvantages of the proposed procedure include
the sometimes rather complex construction of submodels.
The construction process is partially simplified by the use
of PN-patterns and models of reusable structures that have
successfully passed the analysis of dynamic properties. It is
also difficult in some non-linear cases to use the convolution
method.

It is promising in the continuation of this study to
simplify the construction of submodels, to expand the
toolset for building models with elements of time [27] and
color [28] Petri nets. Also among promising tasks is the
representation of templated solutions for correcting models
after detection of dynamic errors, automation of model
construction during the analysis of implemented software
components.

The proposed method‘s of synthesis and analysis of a
combined simulation model of a software system with paral-
lelism may be of interest to specialists such as Analyst, Solu-
tion Architect, Application Architect, Software Engineer,
System Designer, Backend Developer, etc. The method‘s
can also be used to diagnose implemented software; it can
be used by Performance Engineers and Technical Support
Engineers.

7. Conclusions

1. In order to identify the localization of errors in the
software model in the case of full coverage of all model el-
ements by invariants, the use of simulation modeling with
markings indicated by the obtained S-invariants is implied.
During the gradual assembly of components into a complete
model, the use of both visual assessment and simulation
modeling of Petri nets, and analysis based on the invariant
method is implied. This makes it possible to check the pro-
posed solutions, which ensure an increase in the quality of
the obtained model of the software tool.

2. Building a software model with parallelism based on
the toolkit of a combined approach to simulation modeling
of systems with parallelism is complexly formalized. It can
be partially automated by using PN-patterns and individual
previously analyzed components. But when building a soft-
ware model with parallelism, you need to take into account
the context of the tasks it solves, as it affects the way the
model is built. The models synthesized in this way can be
checked using the proposed method‘s.

Information technology

33

3. For a complex solution to the problem of synthesis and
analysis of systems with parallelism, a method‘s of synthesis
and analysis of software system models is proposed. It is
built on the basis of a combination of error localization
techniques in uncertain cases and construction (correc-
tion) of the researched model with a combined approach
to simulation modeling of systems with parallelism. Its
application makes it possible to implement an effective
mechanism for detecting dynamic errors, including cases
in which the invariant method does not give clear results.
It also makes it possible to increase the efficiency of model
correction, which is important in terms of software de-
sign. The devised method‘s of synthesis and analysis of the
combined simulation model of software with parallelism
can be used at the software design stage, as well as at the
stage of diagnosing errors in the implemented software.

C onflicts of interest

The authors declare that they have no conflicts of in-
terest in relation to the current study, including financial,
personal, authorship, or any other, that could affect the study
and the results reported in this paper.

Funding

The study was conducted without financial support.

D ata availability

All data are available in the main text of the manuscript.

References

1. Shakhovska, N., Yakovyna, V. (2021). Feature Selection and Software Defect Prediction by Different Ensemble Classifiers. Database

and Expert Systems Applications, 307–313. doi: https://doi.org/10.1007/978-3-030-86472-9_28

2. Suprunenko, O. O., Onyshchenko, B. O., Grebenovych, J. E. (2022). Analysis of Hidden Errors in the Models of Software Systems

Based on Petri Nets. Èlektronnoe Modelirovanie, 44 (2), 38–50. doi: https://doi.org/10.15407/emodel.44.02.038

3. Esparza, J. (1994). Model checking using net unfoldings. Science of Computer Programming, 23 (2-3), 151–195. doi: https://

doi.org/10.1016/0167-6423(94)00019-0

4. Nesterenko, B. B., Novotarskiy, M. A. (2007). Algebra protsessov dlya modelirovaniya slozhnykh sistem s real'noy rabochey nagruzkoy.

Reiestratsiya, zberihannia ta obrobka danykh, 9 (4), 49–59. Available at: http://dspace.nbuv.gov.ua/handle/123456789/50907

5. Will van der Aalst, Kees van Hee. (2002). Workflow management: Models, Methods, and Systems. MIT Press, 359. doi: https://

doi.org/10.7551/mitpress/7301.001.0001

6. Duarte, L. M., Kramer, J., Uchitel, S. (2015). Using contexts to extract models from code. Software & Systems Modeling, 16 (2),

523–557. doi: https://doi.org/10.1007/s10270-015-0466-0

7. Yakovyna, V. S., Seniv, M. M., Symets, I. I., Sambir, N. B. (2020). Algorithms and software suite for reliability assessment of complex

technical systems. Radio Electronics, Computer Science, Control, 4, 163–177. doi: https://doi.org/10.15588/1607-3274-2020-4-16

8. Kozina, Y., Maevskiy, D. (2015). Where and When Is Formed of Software Quality? Electrotechnic and Computer Systems, 18,

55–59. Available at: https://eltecs.op.edu.ua/index.php/journal/article/view/1597/803

9. Drozd, O., Kharchenko, V., Rucinski, A., Kochanski, T., Garbos, R., Maevsky, D. (2019). Development of Models in Resilient

Computing. 2019 10th International Conference on Dependable Systems, Services and Technologies (DESSERT). doi: https://doi.

org/10.1109/dessert.2019.8770035

10. Cherednichenko, O. Y., Hontar, Y. M., Ivashchenko, O. V., Vovk, M. A. (2018). Analysis of Component-oriented Methods of

Software Developing for E-business Engineering. Visnyk of Vinnytsia Politechnical Institute, 2, 80–88. Available at: https://visnyk.

vntu.edu.ua/index.php/visnyk/article/view/2218

11. Ciccozzi, F., Cicchetti, A., Wortmann, A. (2020). Editorial to theme section on interplay of model-driven and component-based

software engineering. Software and Systems Modeling, 19 (6), 1461–1463. doi: https://doi.org/10.1007/s10270-020-00812-7

12. Suprunenko, O. (2021). Combined approach architecture development to simulation modeling of systems with parallelism. Eastern-

European Journal of Enterprise Technologies, 4 (4 (112)), 74–82. doi: https://doi.org/10.15587/1729-4061.2021.239212

13. Suprunenko, O. O., Onyshchenko, B. O., Hrebenovych, Yu. Ye. (2020). Analitychnyi pidkhid pry doslidzhenni vlastyvostei hrafovoi

modeli prohramnoi systemy. Pratsi mizhnarodnoi naukovo-praktychnoi konferentsiyi «Matematychne modeliuvannia protsesiv v

ekonomitsi ta upravlinni proektamy i prohramamy», Koblevo-Kharkiv: KhNURE, 110–113. Available at: https://mmp-conf.org/

documents/archive/proceedings2020.pdf

14. Suprunenko, O. O. (2019). Combined approach to simulation modeling of the dynamics of software systems based on interpretations

of petri nets. KPI Science News, 5-6, 43–53. doi: https://doi.org/10.20535/kpi-sn.2019.5-6.174596

15. Suprunenko, O. O., Hrebenovych, Yu. Ye. (2022). Instrumentalni zasoby komponentno-orientovanoho modeliuvannia

prohramnykh system ta PN-paterny. Cherkasy: Vydavets Chabanenko Yu.A., 82. Available at: https://drive.google.com/file/d/

1uN-zDLjUfvlKUCD1lb4GZm2w6x1Hy0AF/view

16. Kuzmuk, V. V., Suprunenko, O. O. (2010). Modyfytsyrovannыe sety Petry y ustroistva modelyrovanyia parallelnыkh protsessov.

Kyiv: Maklaut, 252.

17. Suprunenko, О., Grebenovych, J. (2022). Convolution method of graph models of software components for analysis of dynamic

properties of software systems. Tezy dopovidei VI Mizhnarodnoi naukovo-praktychnoi konferentsiyi «Informatsiyni tekhnolohiyi

v osviti, nautsi y tekhnitsi». Cherkasy: ChDTU, 15–18. Available at: https://itest.chdtu.edu.ua/Збірник_тез_ІТОНТ-2022_ма-

кет_26_06.pdf

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 3/2 (123) 2023

34

18. Suprunenko, O., Onyshchenko, B., Grebenovych, J., Nedonosko, P. (2023). Applying a Combined Approach to Modeling of Software

Functioning. Lecture Notes on Data Engineering and Communications Technologies, 30–48. doi: https://doi.org/10.1007/

978-3-031-35467-0_3

19. van der Aalst, W. M. P. (2013). Business Process Management: A Comprehensive Survey. ISRN Software Engineering, 2013, 1–37.

doi: https://doi.org/10.1155/2013/507984

20. Peterson, J. L. (1981). Petri Net Theory and the Modeling of Systems. Prentice-Hall. Available at: https://dl.icdst.org/pdfs/files3/

2bf95f7fde49a09814231bbcbe592526.pdf

21. Hlomodza, D. K. (2016). Zastosuvannia metodu invariantiv do analizu kolorovykh merezh Petri iz dedlokamy. Visnyk NTUU

KPI. Informatyka, upravlinnia ta obchysliuvalna tekhnika, 64, 38–46. Available at: http://ekmair.ukma.edu.ua/bitstream/

handle/123456789/10870/Hlomozda_Zastosuvannia_metodu_invariantiv.pdf

22. Mannel, L. L., van der Aalst, W. M. P. (2019). Finding Complex Process-Structures by Exploiting the Token-Game. Lecture Notes

in Computer Science, 258–278. doi: https://doi.org/10.1007/978-3-030-21571-2_15

23. Meyer, B., Kogtenkov, A., Akhi, A. (2012). Processors and Their Collection. Lecture Notes in Computer Science, 1–15. doi: https://

doi.org/10.1007/978-3-642-31202-1_1

24. Lavrischeva, E. M. (2014). Software Engineering komp'yuternykh sistem. Paradigmy, Tekhnologii, CASE-sredstva

programmirovaniya. Kyiv: Naukova dumka, 283.

25. Kovalenko, A. S., Kuz'muk, V. V., Taranenko, E. A., Suprunenko, O. A., Eremeev, B. N. (2011). Description of the algorithm of

interaction of information flow during tissue-cell therapy by ATM equipment. Eastern-European Journal of Enterprise Technologies,

6 (9 (54)), 43–47. Available at: http://journals.uran.ua/eejet/article/view/2343/2147

26. Zaytsev, D. A., Sleptsov, A. I. (1997). Uravneniya sostoyaniy i ekvivalentnye preobrazovaniya vremennykh setey Petri. Kibernetika

i sistemniy analiz, 5, 59–76. Available at: https://www.researchgate.net/profile/Anatolii-Sleptsov/publication/315047362_Zajcev_

DA_Slepcov_AI_Uravnenie_sostoanij_i_ekvivalentnye_preobrazovania_vremennyh_setej_Petri_Kibernetika_i_sistemnyj_

analiz_No_5_1997_s_59-76/links/58c9056f92851c2b9d56412a/Zajcev-DA-Slepcov-AI-Uravnenie-sostoanij-i-ekvivalentnye-

preobrazovania-vremennyh-setej-Petri-Kibernetika-i-sistemnyj-analiz-No-5-1997-s-59-76.pdf

27. Kryvyi, S., Grinenko, E. (2020). Ecosystems of Software Engineering. Cybernetics and Systems Analysis, 56 (4), 628–640. doi:

https://doi.org/10.1007/s10559-020-00280-3

28. Hlomozda, D. K., Glybovets, M. M., Maksymets, O. M. (2018). Automating the Conversion of Colored Petri Nets with Qualitative

Tokens Into Colored Petri Nets with Quantitative Tokens. Cybernetics and Systems Analysis, 54 (4), 650–661. doi: https://

doi.org/10.1007/s10559-018-0066-4

