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Synergy of grain boundary and interface diffusion during
intermediate compound formation
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ABSTRACT
The kinetics of reactive growth of a compound with a
columnar structure with frozen bulk diffusion is revisited.
The finite rate of redistribution and reaction along moving
interfaces between reagents and growing compound is
taken into account. Cases of planar and curved inter-phase
interfaces are discussed. A new kinetic equation for the
phase growth with evolving grain boundaries is suggested.
Three cases are considered: (1) frozen grain structure, (2)
normal lateral grain growth which does not depend on
phase growth and on diffusion fluxes, (3) flux-driven grain
growth which is induced by grain-boundary diffusion fluxes
across the growing compound layer. The latter model
provides the best fit to the experimental data.
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1. Introduction

Recently the formation kinetics of technologically important spinel ZnAl2O4

during the solid-state reaction between ZnO and amorphous Al2O3 was
revisited [1]. The process is controlled mainly by interface diffusion (at the
stage of nucleation and lateral growth) and later by the grain-boundary
diffusion across the growing compound layer. In general, solid-state reactions
in nanomaterials, or leading to the formation of nanomaterials, often
proceed at comparatively low temperatures when the bulk diffusion is practi-
cally frozen, and all mass transport proceeds via grain boundaries or/and inter-
phase interfaces. Often this transport proceeds simultaneously with the
migration of these boundaries and interfaces (Cellular Precipitation – CP,
Diffusion-Induced Grain-boundary Migration DIGM [2,3], Diffusion-
Induced Recrystallisation, Cold Homogenisation [4–6]) and Liquid Film
Migration (LFM). Close to such phenomena is a Flux-Driven Ripening of
Cu6Sn5 scallops during soldering, when the scallops are growing and coarsen-
ing due to fast diffusion along moving liquid channels which appear due to
wetting of grain-boundaries between grains of Cu6Sn5 by liquid tin and at
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practically frozen bulk diffusion within scallops. [7–10]. Even more compli-
cated combination of interface and surface diffusion with simultaneous for-
mation of porous, sponge-like Cu3Sn was discussed and modelled in [11].
Also, as suggested first in [12], the lateral grain growth may be induced by
the deposition flux during the thin film deposition.

Here we consider the growth of intermediate phase with columnar structure
under condition of frozen bulk diffusion. One of the first papers considering
(experimentally and theoretically) a simultaneous phase and grain growth
was the reference [13,14], in which the main process of the bronze technology
for superconducting intermetallic Nb3Sn formation in the solid-state reaction
of Nb with binary alloy Cu-Sn was studied. The model of Gilmer-Farrell
took into account the influence of lateral grain growth on the phase growth kin-
etics. Phase growth rate when bulk diffusion can be neglected is inversely pro-
portional to the mean lateral grain size. Then, in the case of power-like time
dependencies for mean lateral grain size R = ktm and the phase layer growth
kinetics X = ktn the exponents should be linked by the relation m = 1−2n. In
fact, they found experimentally m = 0.17+ 0.11, n = 0.35+ 0.06. Later, a
similar analysis was suggested by Ghosh [15].

In the previous papers, to the best of our knowledge, the diffusion along the
interfaces between the growing columnar compound layer with reactants was
not properly taken into account, and this simplification may significantly
change the growth kinetics, and may be, the grain structure evolution. It can
be seen in schematical Figure 1: atoms A migrating along grain-boundaries
in A to react with B, spend part of their time for lateral diffusion before assem-
bling at the ‘left’ triple junctions A/i, and also some time for more or less
uniform redistribution and reaction with B reactant along the interface i/B.

Figure 1. Intermediate phase formation by grain-boundary diffusion via grain boundaries with
simultaneous interface diffusion when bulk diffusion is frozen.
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This kinetics should be calculated and taken into account. (Of course, a similar
problem exists with the flux of B-atoms migrating from B to react with A.) On
the other hand, atoms A arriving along the GB within the compound to the
‘right’ triple junction i/B, may choose where to attach and, respectively
what’s grain increment to make wider after reaction with B in the new
atomic layer of compound. We call such mechanism a ‘Flux-induced grain
growth’ [12,16].

Namely, along with well-known normal grain growth in any cross-section
perpendicular to the main diffusion flux, one more mechanism of grain
growth becomes possible: even if the grain boundaries mobility with respect
to normal lateral grain growth is close to zero, the grains may compete and
grow at the expense of their neighbours (not uniformly, but only at the inter-
phase boundaries), due to the redistribution of atoms arriving (along the grain
boundaries) to the junctions of grain and interphase boundaries. At such
junctions, any arriving atom should react and join the new monoatomic
layer of one of two neighbouring grains (two sides of the grain boundary).
The joining process is a choosing procedure, and the larger grain (due to
larger radius of curvature and lower Gibbs-Thomson potential) has more
chances to be chosen.

If the reaction stops, the normal grain growth may proceed further, but the
flux-induced growth stops, since no material can be redistributed at the junc-
tions. It means that at zero external fluxes such morphology evolution would
be frozen. We call such type of morphology evolution in open systems – the
‘flux-driven’ processes. Here we would like to take into account both types of
lateral grain growth – normal and flux-driven one.

In Section 2, we reconsider (in terms of Onsager formalism) the almost
trivial model of monosize approximation of the columnar compound growth,
with an account of only one controlling stage – longitudinal diffusion along
the grain boundaries. In short Section 3, we improve the results of Section 2
by taking into account the Gibbs-Thomson capillary effect. In Section 4, we
take into account the finite rate of two more stages of diffusion – lateral
diffusion along the moving interfaces A/i and i/B. In Section 5 we introduce
the lateral grain size distribution and various possibilities for grain growth
during reactive diffusion. The synergy of phase growth and grain growth is
analysed.

2. Monosize kinetic model of single compound growth controlled by
grain-boundary diffusion

Results of this Section 2 are not new –we just introduce the necessary terms and
remind the basic equations needed in the next Sections. Let the single phase
with a very narrow homogeneity range grow between the two mutually insolu-
ble components A and B.
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Our picture of columnar structure is based on the mechanisms of phase
formation, first experimentally found by Barmak et al [17] as a two-stage
phase formation: The first stage is nucleation and DIGM-like spreading of
nanometres-thick islands along the interface till the full covering is
reached. Spreading was later modelled in [18–20]. Second stage starts after
formation of continuous phase layer with grain-boundaries at the places of
meeting of the spreading islands – it is a normal growth. Our model treats
this second stage (normal growth) after formation of continuous layer of
new phase.

We treat the case when the grain size in pure components is larger than in
the AB intermetallic or of the same order of magnitude. The nuclei of inter-
mediate phase emerge, most probably, at the triple joints of A/A or B/B
grain-boundaries with A/B interface. After nucleation the spreading along
contact interface is thermodynamically and kinetically more favourable than
along the grain-boundaries within A/A or B/B. Thermodynamic favour of
plate-like shape along interface in the sharp concentration gradient was
proved in [21–23]. Kinetic favour of lateral spreading was demonstrated in
[19,20]. Let us consider shortly some alternatives to this geometry, when the
grains in pure components are smaller than in compound layer. In general,
one might expect two sub-cases. In the first sub-case (small equiaxial grain of
A or B or both), one may imagine some ‘enveloping’ of, say, small grains B
by the fast grain-boundary diffusant A and forming initial core–shell structures
(remnants of B-grains, covered by the nanolayers of compound) or the two-
phase mixture of compound nano-grains with B-grains. Such evolution path
will need another model.

The second sub-case corresponds to columnar structure not only of the com-
pound but as well of at least one pure component. If the lateral size of B or A
grains is smaller than the lateral size of AB-compound, the diffusion along
interface will include the diffusion along or across the junctions of A/A or B/
B grain-boundaries with interface – this case will be considered elsewhere.

Here we treat the phase growth after nucleation and lateral growth of nuclei,
when the continuous phase layer has already been formed. The phase consists
of cylindrical grains oriented along the concentration gradient. The mean
lateral radius of grains will be further denoted as R. The total cross-section
area (perpendicular to phase growth direction) is Area.

Area �
∑N
i=1

pR2
i = NpR2 (1)

(Of course, more rigorous treatment needs to consider a more realistic micro-
structure (i.e. honeycomb-like) instead of circular rods, but in grain-boundary
diffusion problems such simplifications are usually considered as acceptable.)
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Diffusion across the compound proceeds only via the longitudinal grain
boundaries, with a total cross-section area of easy diffusion

AGB =
∑N
i=1

2pRi
d

2
= d

∑N
i=1

pRi = NdpR,
AGB

Area
= d

R
, (2)

accompanied by lateral diffusive redistribution along the interfaces A/i and i/B.
Atoms A are gathered to the thin (nanometric) grain-boundary channels of
thickness ‘d’ from the adjacent grains of material A, transported via grain-
boundaries to the opposite interface i/B, are redistributed along this interface,
and react with B. B-atoms do the same in the opposite direction. The difference
in the partial grain-boundary diffusion of A and B is compensated by the Kir-
kendall shift of the whole lattice. A small modification of the Darken analysis
[24] for interdiffusion via grain boundaries can be made using the total
fluxes Itotal = AGB · j‖, where j‖ is a flux density (number of atoms crossing
unit cross-section) within the ‘grain-boundary phase’ along the grain bound-
aries of the columnar structure. The link between the partial grain-boundary
fluxes and the Kirkendall velocity u of the total structure is given according,
as usual, to Galileo’s principle:

VItotalA = AGBVj‖A + Area · cAu, VItotalB = AGBVj‖B + Area · cBu (3)

Here cA, cB are the atomic fractions of components within grain-boundaries
(cA + cB = 1), V is a volume per atom, VI is the density of volume flux,
measured in m/s. Equation (3) is written in the laboratory (Matano) reference
frame – in this frame, the sum of fluxes should be zero: VItotalA +VItotalB = 0.
Thus, AGB(Vj‖A +Vj‖B)+ Area · u = 0, which immediately gives the drift vel-
ocity of the growing compound and the total fluxes:

u = − d

R
(Vj‖A +Vj‖B) (4)

VItotalA = Area · d

R
Vj‖A − cA

d

R
(Vj‖A +Vj‖B)

( )
= Area · d

R
(cBVj‖A − cAVj‖B) = −VItotalB . (5)

We write down here the partial fluxes in Onsager form, in terms of diffusion
potential gradients, instead of the Fickian form of concentration gradient
since concentration gradient within almost stoichiometric compounds is
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difficult to measure:

Vj‖A = −LGBA
∂mA

∂x
= +LGBA cB

∂m̃

∂x
,

Vj‖B = −LGBB
∂mB

∂x
= −LGBB cA

∂m̃

∂x
= −D∗GB

B

D∗GB
A

LGBA cB
∂m̃

∂x
= −D∗GB

B

D∗GB
A

Vj‖A (6)

Here m̃ ; mB − mA = ∂g
∂cB

is a diffusion potential (change of Gibbs free energy

due to the replacement of the A atom by the B atom). We also used the Gibbs-
Duhem relation for the isothermic isobaric case: cAdmA+cBdmB = 0. Onsager

coefficients are: LGBA = cAD∗GB
A

kT
, LGBB = cBD∗GB

B

kT
. (Here D∗GB

A , D∗GB
B are the

tracer diffusivities within grain-boundaries.) Simple algebra then gives

VIB = −A
d

R
(c2AL

GB
B + c2BL

GB
A )

∂m̃

∂x
= −A

d

R
L̃
GB ∂m̃

∂x
(7)

Here the interdiffusion Onsager coefficient is

L̃
GB = c2AL

GB
B + c2BL

GB
A (8)

Obviously, this expression is easily converted into Darken-type formula:

VIB = −A
d

R
(cAD

∗GB
B + cBD

∗GB
A )

cAcB
kT

∂m̃

∂x
(9)

Here
∂m̃

∂x
= ∂m̃

∂cB

∂cB
∂x

= ∂2g
∂c2B

∂cB
∂x

, w ;
cAcB
kT

∂2g
∂c2B

– standard thermodynamic factor,
so that

VIB = −A
d

R
(cAD

∗GB
B + cBD

∗GB
A )w

∂cB
∂x

. (10)

The just shown derivation of Darken-like Equations (4) and (10) for the case of
‘pure’ grain-boundary diffusion and frozen bulk diffusion seems mathemat-
ically trivial but our preliminary discussions demonstrated that the more ‘phys-
ical’ analysis and interpretation may be useful for better understanding. Most of
models treating INTER-diffusion with account of grain boundaries, are concen-
trated on the B-regime of Harrison classification (or Fisher model in simple
case of only one diffusant) when both grain-boundary diffusion and bulk
diffusion (from grain-boundaries into grains) are important (see, for example
[25,26,6]). One of the present authors (AG) published a paper on simultaneous
grain-boundary and bulk diffusion with different grain-boundary diffusivities
and different bulk diffusivities within grains in the model of spherical grains
in the multigrain diffusion couple. The marker velocities appeared proportional
to the difference of BULK diffusivities multiplied by some combination (but not
difference) of grain-boundary diffusivities [27].
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In case of diffusion of A from A to semi-infinite bi-crystal B along the
grain-boundary under frozen bulk diffusivities an interesting model was
suggested by Klinger and Rabkin [28]. They demonstrated that the difference
of the grain boundary diffusivities leads to plating out of additional material at
the grain boundary in the form of a wedge of extra material, which generates
an elastic stress field in the vicinity of the grain boundary. Yet, in their case
the problem had an important constraint which, luckily, we don’t have in
our problem – The ‘extra’atoms going into the GB, had no ‘way out’. In the
conditions of phase layer growth due to grain-boundary diffusion along the
columnar grains the extra atoms DO HAVE THE WAY OUT at the ‘ends’
of columns.

To simplify the picture, let us start with growth of almost stoichiometric
equiatomic compound AB due to grain-boundary diffusion of only one com-
ponent A with intrinsic diffusivity DA from A to B. (DB = 0). Let also the
volume per atom in A-phase, B-phase and AB-phase is the same. Let dNA

atoms of sort A, which formed a layer of the thickness dX = V
dNA

Area
(where

Area is a total cross-section area), passed from A-side to the interface AB/B
and reacted (during lateral spreading) with dNB = dNA atoms of sort
B. Together they formed a new layer at the ‘right-hand side’ of the thickness

2dX = V
dNA + dNB

Area
= 2V

dNA

Area
. Space 2dX for the new-formed layer of com-

pound is provided by (1) interval dX of atoms B used for reaction, and (2) by
the shift of whole grain also by dX to the ‘left’ filling the empty space dX left
by the dNA atoms which travelled via grain-boundaries to react with B. Of
course, the same may be explained in terms of vacancy grain-boundary flux
created by flux A and going to A and providing elimination of layer dX at
the A-side and letting the whole grain to demonstrate the Kirkendall shift.
Thus, vacanies dont need to find sinks/sources at the grain-boundaries or
in the bulk. Vacancy sinks at the A/AB interface and vacancy sources at
AB/B interface are sufficient.

Kirkendall velocity of the grain as whole is u = − dX
dt

(in our case grain as a
whole moves left, from B to A (fast diffusant)). Obviously,

dX = V
dNA

Area
.

dNA = jGBA · AGB · dt.

So, u = −VjGBA
AGB

Area
dt
dt

= −VjGBA
d

R
.

This equation coincides with Equation (4) for the case when only A diffuses
within GB.
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Similar logic may explain the more general case of reaction
mA+ nB = AmBn and for non-zero DB. Here one can see some non-locality
of Kirkendall shift and of the whole interdiffusion process: the Kirkendall
shift at some plane is determined by the concentration gradient times difference
of intrinsic diffusivities integrated over some interval related to migration
length of vacancies. This peculiarity was noticed and proved for the case of
interdiffusion in solid solution with non-ideal vacancy sources in 1985 [29].
In short, if the growing phase has columnar structure and bulk diffusion is
frozen, each grain can be regarded as a Kirkendall marker!

Flux balance at moving interfaces A/i and i/B gives:

A(ciL − 0)
dxAi
dt

= VIBL − 0, A(1− ciR)
dxiB
dt

= 0−VIBR (11)

We treat only the case of almost stoichiometric compounds with narrow con-
centration range, Dci ; ciR − ciL ≪ 1. In this case, the steady-state approxi-
mation is valid for the flux [30], which is of course changing with time but
remains the same near interfaces and inside the phase layer: IBL = IBR = IB .
For the phase thickness Dx = xiB − xAi

dDx
dt

= 1
ci(1− ci)

−VIB
A

( )
,

dDx
dt

= 1
ci(1− ci)

d

R
L̃
GB Dm̃‖

Dx
. (12)

Here the driving force of interdiffusion can be calculated with an account of

Figure 2. Schematic g-curves and common tangent construction for calculation of the thermo-
dynamic driving force.
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common tangent construction (Figure 2)

Dm̃‖ = ∂g
∂cB

|i/B −
∂g
∂cB

|A/i ≈
0− (−Dgi)

1− ci
− (−Dgi)− 0

ci − 0
= Dgi

ci(1− ci)
(13)

Thus, the growth kinetics under the assumption of very fast lateral redistribu-
tion at the moving interfaces satisfies the following law:

dDx
dt

= 1

c2i (1− ci)
2

d

R
L̃
GB
Dgi

Dx
. (14)

3. Taking into account the capillary effect

Let us check the validity of expression (14) with the assistance of thermodyn-
amic analysis. Namely, let us, as typical for non-equilibrium thermodynamic
analysis [31,32], equalise the Gibbs free energy release rate during reactive

diffusion, − dG
dt

, and the total entropy production in local relaxation processes,

times temperature, T
dS
dt
.

For the case of single-phase growth controlled by grain-boundary diffusion
via columnar grain structure when (1) bulk diffusion and lateral grain growth
are frozen, and (2) lateral diffusion along interfaces A/I and I/B is infinitely fast,
one gets

DG = −Dgi
(Area · Dx)

V
+

∑
i

gliDx, (15)

(
∑

overallarcs),sumof allli=const(nograingrowthinthisSectionisconsidered)

−dDG
dt

=g1
V
Area

dDx
dt

−g
∑
i

li
dDx
dt

=Area
V

Dgi−g

∑
i li
A

{ }
dDx
dt

, (16)

T
dS
dt
=

∑
i

lidDx

( )
L̃
GB

V

Dm

Dx

( )2

(17)

Here
∑
i
lidDx is (within columnar structure mode) a volume of grain-

boundary diffusion,

dDx
dt

= −VJi
Area∗ci(1− ci)

=
∑

i lidDL̃
GB Dm

Dx
Area∗ci(1− ci)

. (18)
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Comparing the expressions (16) and (17) while taking into account Equation
(18), one gets

Area
V

Dgi 1− gV

∑
i li

Area∗Dgi

{ }
·

∑
i lidDL̃

GB

Area∗ci(1− ci)
Dm

Dx

=
∑
i

lid

( )
Dx

L̃
GB

V

Dm

Dx

( )2

. (19)

Dm = Dgi
c1(1− c1)

1−− gV

g1

∑
i li

Area

{ }
In the simplified model of cylindrical grains (rods):

Area =
∑
k

pR2
k,

∑
i

li = 1
2

∑
k

2pRk

1
2

∑
k
2pRk∑

k pR
2
k

=
∑

k Rk∑
k R

2
k

= R〈 〉
R2〈 〉 ;

1
r
, so that

∑
i lid

Area
= R〈 〉

R2〈 〉 d. (20)

Then

Dm = Dgi
c1(1− c1)

1− gV/r

Dgi

{ }
= Dgi

c1(1− c1)
1− rcr

r

{ }
(21)

Under the condition r , rcr =
gV

Dgi
, the reaction should stop.

Figure 3. Quasi-steady-state lateral diffusion along interface i/B.
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Thus, Equations (14) for monosize model should be also modified:

dDx
dt

= 1

c2i (1− ci)
2

d

R
L̃
GB
(Dgi − gV/R)

Dx
(22)

The same result could be obtained directly within common tangents con-
struction in Figure 3 and Equation (13) if one takes the Gibbs-Thomson
potential into account and substitutes the driving force −Dgi by
−Dgi + gV/R.

4. Taking into account lateral fluxes along interfaces in the
framework of the monosize model

Consider now the diffusion and reaction processes at the moving interface i/B
with dintiB in the reference frame of this very interface. In this reference frame, the
interface is immobile, and the interface moves from reagent B inside, changing
concentration ci into 1. In the steady-state approximation the conservation con-
dition for B atoms within the narrow circular shell of thickness dR and width
dintiB gives:

dt · dintiB [Vj⊥B (r) · 2pr−Vj⊥B (r+ dr) · 2p(r+ dr)]+ (1− ci)dxiB · 2prdr
= 0, (23)

The last term in the left-hand side of Equation (23). dxiB · 2prdr
V

is a number of

B-atoms, which belonged to the layer dxiB before reaction. ci is a fraction of B in

the just-formed compound, so that ci · dxiB · 2prdr
V

is a number of B-atoms in

the same layer AFTER the reaction, or, in other words, it is a number of atoms

‘lost to A + B = AB reaction’. The rest, (1− ci) · dxiB · 2prdr
V

, is a number of

atoms B which did not react with A at the interface AB/B, and instead
started to migrate towards A/AB interface to react with A at that interface.

Equivalently, one may say that (1− ci) · dxiB · 2prdr
V

is a number of atoms A,

which came from interface A/AB to react with ci · dxiB · 2prdr
V

atoms B to

form a layer of compound A1−ciBci of thickness dxiB. The rest of B (number
of atoms B which did not react with A at AB/B interface), determines the diver-
gence of lateral flux B along the AB/B interface – and it corresponds to the first
two terms in the left-hand side of Equation (23) From Equation (23) one easily
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gets:

Vj⊥B (r) =
1− ci
2dintiB

dxiB
dt

· r (24)

Vj⊥B (R) =
1− ci
2dintiB

dxiB
dt

· R (25)

Continuity of total flux when it converts from longitudinal along grain boundaries

into lateral flux along the interface i/B means: −2pR
dGB

2
Vj‖B = 2pRdintiB ·Vj⊥B (R).

It gives

1− ci
2

dxiB
dt

R = − dGB

2
Vj‖B = + dGB

2
L̃
GB Dm̃‖

Dx
, so that

dxiB
dt

= 1
1− ci

dGB

R
L̃
GB Dm̃‖

Dx
. (26)

Now the diffusion potential changes not only at the grain boundaries (this change we
denote as Dm̃‖) but along the interphase interfaces as well. Namely,

VjB(r) = −L̃
int
iB
∂m̃

∂r
. (27)

dÄm
dr

= 1− ci

2L̃
int
iB d

int
iB

dxiB
dt

· r (28)

Thus, the diffusion potential increments at the interface i/B and, by analogy, at the
interface A/i, can be found:

Dm̃iB ; m̃iB(0)− m̃iB(R) =
1− ci

4L̃
int
iB d

int
iB

dxiB
dt

· R2, (29b)

Dm̃Ai ; m̃Ai(0)− m̃Ai(R) =
1− ci

4L̃
int
Aid

int
Ai

dxAi
dt

· R2. (29a)

Substituting equations (11, 12) for the interface velocities, one gets the links between
the interface stepsofdiffusionpotential and thechangeofdiffusionpotential along the
grain boundaries:

Dm̃iB = 1− ci

4L̃
int
iB d

int
iB

· R2 · 1
1− ci

dGB

R
L̃
GB Dm̃‖

Dx
= R

4Dx
dGB

dintiB

( )
L̃
GB

L̃
int
iB

( )
Dm̃‖ (30b)

Dm̃Ai =
1− ci

4L̃
int
Aid

int
Ai

· R2 · 1
1− ci

dGB

R
L̃
GB Dm̃‖

Dx
= R

4Dx
dGB

dintAi

( )
L̃
GB

L̃
int
Ai

( )
Dm̃‖ (30a)

The total change, of course, should be the same as in Equation (13) withmodification
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concerning Gibbs-Thomson potential:

Dm̃Ai + Dm̃‖ + Dm̃iB = Dgi
ci(1− ci)

1− gV/R
Dgi

( )
. (31)

Substitution of Equation (30) into Equation (31) gives:

Dm‖ 1+ p
R

4Dx

{ }
=

Dgi 1− gV/R
Dgi

( )
ci(1− ci)

, p

;
1
4
dGBL̃

GB 1

dintAi L̃
int
Ai

+ 1

dintiB L̃
int
iB

[ ]
, (32)

so that

Dm̃‖ =
Dgi 1− gV/R

Dgi

( )
c2i (1− ci)

2 1+ p
R
Dx

[ ] , (33)

dDx
dt

= L̃
GB

c2i (1− ci)
2

d

R
·
Dgi − gV

R
Dx+ pR

(34)

To the best of our knowledge, Equation (34) was never obtained before. One may
interpret the denominator in this equation as some integral effective distance that
should be travelled by atoms to complete the reactions – this distance includes the
layer thickness as well as lateral size of the grain (with some coefficient, depending
on the ratio of diffusivities along the grain- and interphase boundaries).

Modifications of Equation (34) due to dispersion of grain radii (lateral grain
sizes) and due to curved interfaces are derived in Appendix A1.

5. Normal and flux-driven grain growth during phase layer growth

Equation (34) contains two time-dependent variables – phase thickness and
lateral grain radius. In the realistic case of some distribution of lateral sizes,
it should be mean radius or mean squared radius. Measuring grain size distri-
bution in the compound layers with columnar structure and especially the time
evolution of this distribution, as well as the possible gradients of lateral grain
sizes still remains a challenge for experimental researchers. In a very idealistic
case of zero solute drag, etc., one could assume a parabolic growth law for mean
radius. In previous models with p = 0 and Rcr 
 0 in the Equation (34) sub-
stitution of R proportional to the square root of time immediately led to the
power law with exponent 0.25 for the compound thickness. It is rather far
from the majority of experimental data – they are roughly between 0.33 and
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0.5, and most interesting for our papers [15,1] they coincide and are equal to
about 0.37.

Let us consider three cases of Equation (34).
Case 1. Mean size R is almost constant, lateral grain growth is locked by

solute drag at grain boundaries or by any other factor. In this case, Equation
(34) gives the linear-parabolic dependence:

linear , Dx � L̃
GB

c2i (1− ci)
2

d

R
·
Dgi 1− gV/R

Dgi

( )
pR

× t at Dx ,, pR, and (35a)

parabolic, (Dx)2 � 2L̃
GB

c2i (1− ci)
2

d

R
· Dgi − gV

R

( )
× t , at Dx .. pR . (35b)

Case 2. If one assumes that the mean lateral grain size satisfies the parabolic law
(typical for pure grain growth without solute drag), R(t) =

��������
R2
0 + kt

√
, where R2

0 is
the mean squared lateral size of initial nuclei of the forming phase at the moment
of continuous layer formation, then the phase thickness has rather complicated
growth law with exponent changing with phase thickness. A typical numeric sol-

ution for the time-dependent growth exponent n = dlnDx
dlnt

is shown in Figure 4.

Case 3 (Figure 5). So far, during the longitudinal growth of columnar grains the
cross-section of each grain is reproduced in each new atomic layer formed due to

Figure 4. Typical numeric solution of Equation (34) in the case 2, when R(t) =
��������
R20 + kt

√
.

Absciss corresponds to reduced phase thickness
Dx
Dx0

(Dx0 - initial phase thickness), after for-

mation of continuous layer, typically up to 10 nanometres.
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the reaction of incoming A-flux with species B at the interface compound/
reagent B. (And analogically with B atoms coming to form the new atomic
layer of the compound at A/i interface.) Yet, in reality, the physical picture
may be even more complicated [15]. Namely, at each new growth step – during
the formation of a new atomic layer the grain bottom (or grain top) becomes a
bit wider or thinner. It proceeds due to the same capillary driving forces but the
mechanism is different: in normal grain growth, the atoms should leave one
grain and immediately join another one. In our case of the flux-driven grain
growth, the atoms do not need to leave any grain – they are already migrating
within GB-subsystem. All that they should do – is to choose what grain to join
during the formation of the new atomic layer of this grain. This additional choice
makes larger grains a bit larger, and smaller grains – a bit smaller. In ref.[16] we
demonstrated that under some natural assumptions, during such flux-driven
grain growth the radius of grain should change with thickness according to

dR
dDx

�
�����
a/R

√
=

�����
gV

kTR

√
, so that R �

�����
aDx

√
. (36)

Figure 5. Case 3 of the flux-driven grain growth. Typical dependence of power exponent

n = dlnDx
dlnt

for phase growth around 0.4 (for grain size, according to Equation (36), it will be

divided by 2 – about 0.20 due to square root in Equation (36)). The power exponents 0.4
and 0.2 are close to the experimental results of [1] and [15].
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Thus, in case 3 one gets,
dDx
dt

= L̃
GB

c2i (1− ci)
2

d�����
aDx

√

·
Dgi 1− gV/

�����
aDx

√

Dgi

( )
Dx+ p

�����
aDx

√ (37)

6. Summary

New kinetic Equation (34) for the reactive growth of compound with columnar
grain structure is derived, taking into account the redistribution kinetics of
atoms along interfaces compound/reagent, as well as simultaneous grain and
phase growth. At least in some cases, better agreement with experimentally
observed kinetics is obtained for the flux-driven grain growth (power exponents
close to 0.4 for phase thickness, and 0.2 for lateral grain size).
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Appendix

Appendix. Lateral interdiffusion along spherical interface i/B

Let us consider the flux balances along the interface in the case when the interface is
not planar but instead has the shape of moving spherical cap with some curvature
radius rk

dl = dr
cos u

= rdu, r = r sin u – elementary geometry.

Fig. A1.2.

Fig. A1.1. Fluxes in-, out- and along the elementary volume at the interface i/B.
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Flux balance in the reference frame of the moving interface I/B:

2prdintiB ·Vj⊥l (r)− 2p(r+ dr) · dintiB ·Vj⊥l (r+ dr)+ 2prdintiB (1− ci)ViB sin u(r)

−2p(r+ dr)dintiB (1− ci)ViB sin u(r+ dr)+ (1− ci)ViB cos u(r) · 2prdl = 0 (A1.1)

d{[Vj⊥l + (1− ci)ViB sin u] · r} = 1

dintiB

(1− ci)ViB · rdr

Vj⊥l (r) =
(1− ci)ViB

2dintiB

· (r− 2dintiB sin u(r)) (A1.2)

Almost everywhere r ≫ 2dintiB sin u =.

Vj⊥l (r) �
(1− ci)ViB

2dintiB

· r, Vj⊥l (Rk) � (1− ci)ViB

2dintiB

· Rk (A1.3)

Let us translate Equation (A1.3) into the equation for diffusion potential:

Vjl = −L̃
int
iB

∂m̃

∂l
= −L̃

int
iB

∂m̃

∂r
cos u = (1− ci)ViB

2dintiB

· r, (A1.4)

dÄm = − (1− ci)ViB

2dintiB

· r 1
cos u

dr = − (1− ci)ViB

2dintiB

r2 sin udu, (A1.5)

Dm̃iB = m̃(0)− m̃(Rk) = (1− ci)ViB

2dintiB

R2
k

sin2uk
(1− cosuk) = (1− ci)ViB

4dintiB

R2
k

cos2
uk
2

( ) . (A1.6)

Now we use the continuity equation, to link the longitudinal flux along grain-boundaries
and lateral fluxes along interfaces:

−2pRk
dGB

2
qkVj‖GB = 2pRkd

int
iB Vj⊥l (Rk).

Here qk is a factor taking into account the dispersion of lateral radii and corresponding
dispersion of lateral fluxes.

qk L̃
GB Dm̃‖

Dx

( )
= 2dintiB

dGB
(1− ci)ViB

2dintiB

Rk =. qk = QRk

∑
k

2pRk
dGB

2
qk =

∑
k

2pRk
dGB

2
; AGB, Q =

∑
k Rk∑
k R

2
k

= 〈R〉
〈R2〉

ViB = dGB〈R〉
〈R2〉 · 1

1− ci
L̃
GB Dm̃‖

Dx
, VAi = − dGB〈R〉

〈R2〉 · 1
ci
L̃
GB Dm̃‖

Dx

dDx
dt

= const
〈R2〉/〈R〉(Dx+ p〈R2〉/〈R〉)
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