
Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (112) 2021

74

Copyright © 2021, Authors. This is an open access article under the Creative Commons CC BY license

COMBINED
APPROACH

ARCHITECTURE
DEVELOPMENT

TO SIMULATION
MODELING OF

SYSTEMS WITH
PARALLELISM
O k s a n a S u p r u n e n k o

PhD,	Associate	Professor
Department	of	Software		
for	Automated	Systems

Bohdan	Khmelnytsky	National	
University	of	Cherkasy
Shevchenka blvd.,	81,		

Cherkasy,	Ukraine,	18031
E-mail:	ra-oks@vu.cdu.edu.ua

Paradigms and graphical-analytical tools for building simulation tools
and forming the architecture of a combined approach to studying the dyna-
mic properties of systems with parallelism are described. An extension of the
formal language of Petri nets is presented, which has greater modeling power
than WF nets. The properties of hierarchical Petri nets are used to synthe-
size a holistic model.

Discrete-event modeling and modeling of dynamic systems, which allow
reflecting the quantitative and qualitative characteristics of the elements of
the systems under study, served as the basis for the combined approach to the
simulation of systems with parallelism. On their basis, graphic-analytical
tools are proposed that provide the ability to describe the modeled system,
adhering to the principle of structural similarity. They have dynamic simu-
lations that make it easy to visually analyze and correct the model. Also, the
proposed toolkit provides for the analysis of the dynamic properties of the
model, which makes it possible to identify accumulated phenomena that can
lead to unpredictability of the system’s functioning.

A conceptual model for the synthesis and analysis of systems with paral-
lelism is proposed, which provides for the construction of the components
of the model based on the architecture. Their step-by-step analysis and the
formation of an integral model of the software system are carried out using
a network representation, according to the matrix description of which
invariants are calculated. The analysis of invariants allows one to obtain the
dynamic properties of the model and determine the localization of structures
that lead to critical situations when they are detected.

The architecture of the combined approach to the simulation of systems
with parallelism is built, which provides the study of their dynamic proper-
ties to improve the reliability of the functioning of software systems

Keywords: architecture of the combined approach, formal languages of
Petri nets, dynamic modeling tools

UDC 004.942
DOI: 10.15587/1729-4061.2021.239212

How to Cite: Suprunenko, O. (2021). Combined approach architecture development to simulation modeling of systems

with parallelism. Eastern-European Journal of Enterprise Technologies, 4 (4 (112)), 74–82. doi: https://doi.org/10.15587/

1729-4061.2021.239212

Received date 29.06.2021

Accepted date 16.08.2021

Published date 30.08.2021

1. Introduction

In the context of the growing complexity of software
systems [1], the task is to make sound design decisions at
the stages of design, debugging and maintenance of soft-
ware projects. The complexity of software, in particular the
structural and functional complexity, due to the presence of
numerous parallel and competing processes that interact in
the operation of the software product. For studying the static
and dynamic properties of software systems with parallelism,
one of the most powerful research tools is simulation. Its
means make it possible to describe the systems under study
at various levels of abstraction, taking into account their
quantitative and qualitative characteristics [2].

When describing and analyzing software systems, several
models are often built [3], reflecting various aspects of the
system under study. When the conclusions made on the basis
of these models are contradictory or incomplete, it becomes
necessary to build a combined model, combines the means
of various methodologies of simulation modeling [3, 4]. The
toolkit, on the basis of which it is possible to build com-
bined models, combines several methodologies, poorly deve-
loped [5, 6]. So, when designing software systems, models are
used that describe various aspects of their construction and
functioning. For example, UML diagrams [7], which are used
to represent and analyze design decisions, allow describing
structural aspects in diagrams of classes, packages, compo-
nents, etc. Behavioral aspects are described by diagrams of

activity and automata, as well as diagrams of use cases. The
dynamic aspects of interaction are represented in sequence
diagrams, communication, interaction, and synchronization.
But the absence of dynamic simulation tools, as well as the
inconsistency of the levels of detail, make it impossible to
analyze the dynamic properties of components and the entire
system, and is a problem in software design [6]. Therefore, the
urgent task is to develop a unified instrumental and metho-
dological basis for combined simulation models for the study
of complex systems with parallel and competing processes.

2. Literature review and problem statement

When designing software tools, a set of diagrams and
diagrams is used [7], for example UML diagrams, each of
which reflects certain aspects of the software being developed.
But the specificity of diagrams, which does not provide for
visual dynamic simulation when analyzing the functioning
of a unified software model, makes it difficult to evaluate and
correct a software project. This may lead to not detecting
a certain part of errors or design solutions, which in the future
may cause the emergence of unpredictable functioning of the
software product. Therefore, unresolved issues are related to
the means of representing and analyzing the general model
of a software system, primarily due to the large dimension of
this problem and the heterogeneity of diagrams within one
approach, and sometimes the use of diagrams developed in dif-

Mathematics and Cybernetics – applied aspects

75

ferent approaches. But in the works of Hoare and Dijkstra it
is noted that software must have «well-defined behavior» [7]
and can be analyzed as mathematical objects. This idea is used
in [8] to model workflow control based on WorkFlow inter-
pretation of Petri nets (WF nets). But WF networks have
significant limitations that do not allow them to be fully used
in modeling and analyzing models of software systems. There-
fore, it is advisable to conduct research on the development
of an approach and tools for modeling and analysis of systems
with parallelism, which include software systems.

To determine the basis for the development of an ap-
proach to modeling software systems, let’s consider simula-
tion modeling, to which the toolkit based on WF networks
belongs. Simulation modeling allows an order of magnitude,
and sometimes more, to improve the efficiency of solving ap-
plied problems [5]. According to modern research, simulation
has four paradigms [6]: simulation of dynamic systems, dis-
crete-event (process-oriented) simulation, system dynamics,
and agent-based simulation. In the simulation of dynamic
systems, the system under study is described by a set of state
variables and algebraic analogs of differential equations of
various types, assigned for the variables and describing their
transformations in time. Variables most often have physical
meaning and are continuous. Simulation of dynamic systems
refers to the concept of quality simulation [4].

Discrete-event modeling allows one to describe the main
states of the system and the conditions for the transition from
current to next states, taking into account complex cause-and-
effect relationships [8]. This simulation paradigm also makes it
possible to reproduce the possible actions of the system in the
middle and in the environment at successive points in time. It
is used in applied industries, transport systems, etc. [4].

Using the system-dynamic approach, one describes the
accumulation of characteristics of the studied processes, cha-
racterized by nonlinearity, which is due to the effects of de-
lay [4]. In models of system dynamics, generalized quantitative
characteristics of flows act as variables, which determines the
belonging of system dynamics to the concept of quantitative
modeling. System-dynamic models are used to solve the prob-
lems of strategic management of large organizational systems;
they are used only at the macro level and do not have the means
for a detailed description of complex systems. In contrast to

system dynamics [4], discrete-event modeling tools (Fig. 1)
allow describing the cause-and-effect relationships between
model elements both at the meta-level and at the macro- and
micro-level of modeling [4, 9]. These tools reflect the quan-
titative and qualitative characteristics of the elements of the
system, translating them into associative-numerical form.

Agent-based modeling intended for the study of decen-
tralized systems, its difference is the consideration of system
objects as active entities with their inherent behavior. Also,
agent-based models are adaptive, which makes it possible
to display the adaptation of the model to changes in exter-
nal conditions [4]. Models in this paradigm of simulation
modeling are built according to the «bottom-up» principle,
therefore, when constructing them, it is more difficult to take
into account the general characteristics of the system being
modeled, in particular when designing a software system.

From common tools of simulation modeling, a special
group is formed by the graph of tools [2], which allow to de-
scribe the system at a certain point in time and simulate its
behavior under the influence of external factors. These tools
relate to the paradigm of discrete-event modeling and allow
to describe the states into which the system passes under
the influence of certain factors, the characteristics of these
states and the transition conditions. Another paradigm of
simulation modeling [4] – modeling dynamic systems – al-
lows modeling a limited number of states (Fig. 1), which is
a limiting factor in modeling systems with parallelism. On
the other hand, messages of discrete-event modeling and
modeling of dynamic systems allow to combine graphi-
cal-analytical properties in tools. They combine a graphical
display of the dynamics of the functioning of the modeled
system with an unambiguous mathematical description of its
structure and dynamic features, which is used to determine
and localize the unpredictable behavior of the model. Thus,
the toolkit created on the basis of these two paradigms al-
lows reproducing the behavior of the model over time and
calculating the dynamic characteristics of the model. This
approach helps to identify accumulated phenomena that
manifest themselves only under certain conditions, but can
lead to unpredictable behavior, the identification of which
is a difficult problem when analyzing models of parallel and
distributed software systems [9].

Qualitative characteristics
Quantitative characteristics

+ Unambiguous
mathematical
description,
+ Description of
continuous and
discrete models,
+ Developed
mathematical
apparatus,
- analysis of
models with a
small number of
states.

Discrete event
modeling

System dynamics

Agent-based
modeling

Modeling of
dynamic systems

Meta level
(Strategic level)

Macrolevel
(Operational level)

Microlevel
(Tactical level)

+ Unambiguous
mathematical
description,
+ Graphical and
analytical
presentation,
+ Elements of
dynamic
description of
models with a large
number of states,
+ Top-down model
building,
- description of
discrete models.

+ Description of
the nonlinear
characteristics of
the model,
- no detail
elements.

+ Visualization of
the model,
+ Analysis of
rational and
irrational decision
options,
- bottom-up model
building only.

Distributed
models

Lumped models

Fig.	1.	Advantages	and	disadvantages	of	simulation	paradigms	for	problems	of	modeling	systems	with	parallelism

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (112) 2021

76

One of the representatives, built on a combination of
discrete-event modeling and modeling of dynamic systems,
is the theory of Petri Nets (PN) [10]. It allows not only to
describe causal relationships in models with parallel and
competing processes, but also to conduct research on mo-
dels [6, 11]. Petri nets combine a convenient graphical repre-
sentation with a mathematically rigorous description of the
model [12, 13], which determines their use in the automated
analysis of the constructed model (critical properties, excep-
tional situations).

An important characteristic of a software system is
the predictability of behavior and the performance of all
its elements. To achieve all its characteristics, limited Pe-
tri nets are used, to which safe, estimation Petri nets, WF
nets (Work Flow Petri Nets, WF) and temporary Petri nets
belong [14]. For these interpretations and modifications of
Petri nets such properties as liveliness (reachability), preser-
vation and predictebility are proved [8]. For the arrangement
of the constituent systems with parallelism into a single mo-
del, the proposed nested [15] and interacting [16] Petri nets.
But the mechanisms for simulating dynamic characteristics
in nested Petri nets are rather complicated. For example,
when simulating a model as a whole, it is difficult to control
active streams of events, since it is necessary to move from
one level of detail to another. For interacting Petri nets, in
particular for their most studied WF-interpretation, the
liveliness condition has not been proven [16].

In [17], an approximate proof of resource bisimulation for
one-counter Petri nets was proposed, which was developed
in [18] for Petri nets with λ-transitions. This idea can be used
to reduce the dimension of a parallelism model to explore it
analytically. But the use of λ-transitions in the tools for gra-
phical display of the dynamics of the functioning of the model
negate the advantages of visual analysis. Therefore, in the de-
veloped approach and modeling tools, it is necessary to provide
a description of the auxiliary functions of the model, which are
usually described by λ-transitions, in an explicit form.

In [19], the lack of time tracking is attributed to the
disadvantages of modeling corporate applications with Petri
nets, but time is of great importance in imitating the func-
tioning of these systems. Also, the authors of [19] noted as
a disadvantage of applying the rules of Petri nets of free
choice, when several transitions can be activated simulta-
neously. To solve these problematic moments, the authors
of [19] propose a Petri nets with Markov chains and queuing
theory. But the potential of analytical research of simulation
models of the theory of Petri nets is not considered.

Some modifications of bounded Petri nets have been well
studied, but need adaptation to describe software systems.
Thus, the most common WF networks [11] are used to de-
scribe workflows, but they do not allow solving all the prob-
lems that stand in the analysis of models of software systems.
In particular, they do not support constructions like «critical
section access control» and «bounded buffer resource trans-
fer» [14] in the producer/consumer problem. This is due to
the absence of controlling vertices of the place, which must
be marked up in the initial marking, which contradicts the
definition and basic properties of WF networks [8].

When working with a model in the process of its ana-
lysis, it is necessary to show localization and the cause of
a conflict situation, which requires appropriate means. When
designing software systems [6, 7], the description and visual
analysis of design solutions is carried out in diagrams and
diagrams. But the absence of a dynamic component in them,

which makes it possible to reproduce the dynamic features
of functioning in the analysis, complicates the situation.
Therefore, in the formation of tools for dynamic modeling of
systems with parallelism, it is necessary to improve the tools
for simulation modeling.

Thus, tools for the description and analysis of models of
software systems that allow processing large-dimensional
models require further development. It is necessary to form
an approach that combines the means of graphical construc-
tion of models of systems with parallelism, their analysis and
correction on a single representation. For simulation and vi-
sual analysis, the WF network needs to be expanded and the
mechanisms of visual analysis of models need to be improved.

3. The aim and objectives of research

The aim of research is to develop the architecture of
a combined approach to the simulation modeling of systems
with parallelism. This will make it possible to determine the
dynamic characteristics of the components and the system
with parallelism as a whole to improve the reliability of the
functioning of software systems.

To achieve the aim, the following objectives have been set:
– to describe the features and limitations of formal langua-

ges of Petri nets for the construction of tools for the combined
approach of simulation modeling of systems with parallelism;

– to analyze the properties of bounded Petri nets to ana-
lyze the dynamic properties of simulation modeling of systems
with parallelism;

– to form the principles and conceptual model for the de-
velopment of the architecture of a combined approach to the
simulation modeling of systems with parallelism.

4. Materials and methods of research

Developing an approach and tools for modeling systems
with parallelism requires identifying the potential and limita-
tions of existing simulation tools. On their basis, a combined
approach to modeling software systems with parallelism is
formed, which, in a single presentation, takes into account
the specifics of describing the structure and analyzing the
functioning of the systems under study.

In the theoretical study, the paradigms of simulation
modeling were used, which made it possible to form the basis
for a combined approach to modeling systems with paralle-
lism based on modeling dynamic systems and discrete-event
modeling. The theory of formal languages of Petri nets is used
to determine the potential and limitations of interpretations
and modifications of Petri nets, used in the development of
simulation tools for systems with parallelism. The theory
of computer systems has made it possible to formalize the
main stages of the study of models of software systems with
parallelism. Algebra of processes and a component-oriented
approach to the design of software systems provided an op-
portunity to build architecture of a combined approach to
the simulation modeling of systems with parallelism.

Research hypothesis: the extension of WF nets with the
properties of limited interpretations and modifications of
Petri nets will allow building structural-like models of sys-
tems with parallelism, taking into account qualitative and
quantitative parameters. The matrix representation of con-
stituent systems with parallelism bounded Petri nets can be

Mathematics and Cybernetics – applied aspects

77

used to determine the dynamic properties of network models.
Analysis of the markup during simulation will improve the
efficiency of the analysis of the dynamics of the functioning
of network models.

5. The results of the study of the soil and the development
of the architecture of the combined approach for the

simulation modeling of systems with parallelism

5. 1. Formal languages of Petri nets, their features and
limitations

Petri nets (PN) generate a class of formal Petri net lan-
guages. The language of Petri nets γ = (PN, S, σ, s0, MF) is
represented by a set of strings over the alphabet S of symbols
denoting a finite set of transition vertices by the function
σ: Т→S, as well as the initial state s0 and the set of final
states МF. Such a Petri net is called marked.

The alphabet of the languages of Petri nets is connected
with the vertices of the transitions, so the marked function
assigns the vertices of the transitions to the symbols of the al-
phabet of the formal language: σ: Т→S. The sequence of start-
ing transitions of the net generates a string of the language of
Petri nets. Depending on the set of final markings, formal lan-
guages of L, G, T and P-type Petri nets are distinguished [14].

The languages of Petri nets are based on the principle of
strict monotony [20], since if the transition vertex is permis-
sible for marking μi, and it will be allowed for marking μj > μi,
and if μ μi

t
i→ ¢ even μ μj

t
j→ ¢ , then ¢ ≥ ¢μ μjj i . This indicates

the finiteness of the covering tree for the Petri net, as well as
development of problems of coverage (liveliness), support of
the governing state and limitation.

The modification of WF nets is described by the class
of formal languages of L-type Petri nets (in the language of
completely finite Petri nets) [14], which is the most limited.
The class of L-type languages is closed in relation to such
important types of composition for modeling as concatena-
tion, union, intersection, inversion, parallel composition and
regular substitution [20]. Therefore, Petri nets, described by
formal L-type languages, are promising for creating tools for
modeling software systems.

But in Petri nets, which are described by L-type lan-
guages, of the model firing from an arbitrary markup that
corresponds to the intermediate state of the target system is
not provided, as well as safe access to the critical section and
similar constructions is not specified. Classes of languages
of Petri nets are closely related to each other, in particular,
any language of G-type is included in the class of languages
of L-type G L⊆ intermediate markings. G-type languages
(a class of free languages for Petri nets) provide for working
with a set of any initial markings, and also have no restric-
tions on final markings. Also, the G-type class reflects the
hierarchical Petri nets [10], which allow to obtain a model
by merging its individual fragments. This is an important
property that is used in the design of software systems.
An extension of the language of L-type Petri nets by elements
of the G-type language is the LG-language describing the
Petri net PN = (P, T, K, Q, R) with the addition of the transi-
tion vertices σ: Т→S, initial marking μ0, intermediate mark-
ing μ¢ and a set of final markings MF, such that

L
t t T

t t
L

j j

j j F

G
=

() ∈ ∈ ∧

∧ ()∨ ()() ∈

σ

δ μ δ μ

S

Μ

*

, ',
.

0

 (1)

Thus, language of LG-type Petri nets makes it possible
to carry out modeling, starting with any marking that refers
to a finite set of final markings of the MF net. Also Petri
nets, which are described by LG-type languages, can have
a finite set of control vertices, the marking of which has to be
restored at the end of the model simulation session. Such mo-
dels can be converted to models, described by formal L-type
languages, but such models will violate the structural simi-
larity in relation to the simulated systems, complicate their
analysis. Also, the converted models will have a significantly
larger number of elements, increasing the complexity of cal-
culating their dynamic properties.

5. 2. Properties of bounded Petri nets for analyzing the
dynamics of systems with parallelism

Bounded Petri nets include [14] safe, estimation and
temporary Petri nets, WF nets (Work Flow Petri Nets, WF).
The properties of Petri nets are divided into static and dy-
namic [13]. Static properties of Petri nets associated with
the structural features of their construction. When analyzing
the static properties of a subclass of estimation Petri nets –
control Petri nets – the structure of a Petri net is considered
together with control functions [13].

When checking the dynamic properties of Petri nets, the
functioning of the model is considered and the analysis of
complete and partial sequences of transitions is carried out.
Dynamic characteristics include [8, 13] liveliness, reachabi-
lity, safety (boundedness), preservation, conflictlessness (de-
fectlessness for WF networks).

In the works of Heck [21], the properties of liveliness
and safety were considered, in particular, the concept of
liveliness was associated with the absence of dead locks,
and the concept of safety was associated with the absence
of unpredictable functioning of the model. The problems of
dead locks and unpredictable behavior in network models
of production systems have been associated with free choice
constructs. That is, when the vertex of the place is the input
one up to several vertices of transitions, a conflict situation
arises, which was solved [21] by providing a choice of any of
the vertices of the transitions for subsequent fired.

Definition 1. A Petri net is live when it does not have
non-living markings for any possible sequences of firing the
vertex of transitions σi, that is μ i ∉Μmax .

The problem of proving the reachability property can be
reduced to proving liveliness [21]. The proof of the reach-
ability property is important, since most of the problems of
analyzing Petri nets can be reduced to it [14].

Definition 2. The reachability problem for a Petri net PN
with a marking μ is to determine the reachability of a mark-
ing μ¢, that is, μ¢∈M(PN, μ).

The reachability of the marking μn with some initial
marking μ0 is ensured by the existence of successively
marked transition vertices σ = t1, t2, t3, …, tn, as a result
of which the marking μn is achieved, which can be written
as μ0[σ] > μn. The set of all possible reachable markings
with μ0 M(PN, μ0) corresponds to the set of all possible se-
quences W(PN, μ0) = {σ1, σ2, …, σs}.

The safe property of Petri nets concerns the limitation of
the number of markers that can be at the top of a place at the
same time. The safe condition for safe Petri nets requires that
there are no more than one marker at the site vertex, that is,
W(PN, μ0) = {σ1, σ2, …, σs}. Safety Petri nets are used to de-
scribe in detail parallel processes, for example, in the case
when it is necessary to control so that the next set of processes

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (112) 2021

78

can occur only after the end of the previous one. Safety in the
class of safe Petri nets is a special case of the boundedness
property, which provides for the establishment of a certain
restriction on the maximum number of markers that are si-
multaneously in the investigated vertex of the place.

Definition 3. A vertex of a place pε∈P of a Petri net with
initial marking μ0 is k-bounded (k-safe) if ∀ ¢∈ () ¢() ≤μ μ μ εM PN p k, : .0

∀ ¢∈ () ¢() ≤μ μ μ εM PN p k, : .0

In safe Petri nets, all vertices of a place are 1-bounded.
In the estimated Petri nets, vertices of places with different
restrictions are allowed; such a network is called k-boun-
ded [13] behind the top of the place, which has the largest
restriction k = max(k1, k2,…, kn). The boundedness property
of Petri nets makes it possible to model with their help pro-
cesses that depend on quantitative indicators, for example,
the accumulation of certain resources.

The reachability problem can be formulated as the reach-
ability problem for a dead-end marking, let’s demonstrate
this using the example of a model built by an estimation
Petri net (Fig. 2, a). With the initial marking μ0 = [1, 0, 0, 0]T,
transitions in the sequence σ1 = t1, t2, t3, t2, t4, will be triggered
sequentially, which will allow restoring the original marking.
With the initial marking μ01 = [5, 2, 1, 1]T, the transition fir-
ing sequence is:

σ01 0 2 2 3 2 1 0 2 2 3 0 0 2 0 1 0 0

1

= t t t t t t t t t t t t t t t t t

t

, , , , , , , , , , , , , , , , ,

,tt t t t t t t t t t t t t t t t t t

t
3 0 1 2 2 2 1 2 1 1 2 1 3 2 1 2 1 2

0

, , , , , , , , , , , , , , , , , ,

,tt t t t t t t t t t t t t t t t3 2 0 2 1 1 1 2 2 2 2 2 2 2 2 2, , , , , , , , , , , , , , , .

will lead to the marking μ1t = [0, 0, 0, 31], which corresponds
to the dead lock state, since with such marking, neither the
vertex of the transition to the model can be fired. Thus, it is
important to analyze the options for the functioning of the
model and identify signs of a dead lock, especially in cases
of implicit dead lock (traps). This problem can be solved by
calculating the T- and P-invariants based on the basic equa-
tion of Petri nets [22], as well as analyzing the rank of the
incidence matrix of the model.

t1
4

2
3

p1
t2

t3

t4

p2

p3 p4

2
t1 3

p1
t2

t3

t4

p2

p3 p4

2

p5

 a b

Fig.	2.	Model	based	on	the	estimated	Petri	net

The solution to the system of linear Diophantine equa-
tions [22]: W T X = 0 is the vector X called the T-invariant. It
ensures the existence of sequences of transitions σ = t1, t2,…, tn
from the marking μ0, which leads to the same initial marking.
The T-invariant, which covers all elements with nonzero
va lues, corresponds to the properties of liveliness (repeat-
ability) and raechability. P-invariants find a decoupling of
the system of linear Diophantine equations: WP = 0, when all
elements of P-invariants are covered with nonzero values,
a correspondence is established to the boundedness and pre-
servation properties of the model.

To describe the structure of the network, the incidence
matrix W is used, which consists of columns that correspond
to the vertices of transitions and rows that correspond to
the vertices of places. When calculating the rank of the
matrix W, the complete or incomplete controllability of the

model is determined (provided that the T- and P-invariants
are completely covered by nonzero values). If the rank of
the incidence matrix is less than the smallest of the cardi-
nalities of the sets of transition vertices |T | or tops of places
|P | rang (W) < min(|T |, |P |), then the model is not completely
controllable, otherwise, if these indicators are equal, the
model will be completely controllable.

Calculation of invariants for the model (Fig. 2, a) had the
following results: T2a = [1, 2, 1, 1]T; P2a = [5, 2, 1, 1]T; the rank of
the incidence matrix: rang (rang (W2a) = 3 < min(|T2a|,|P2a|) = 4.
Thus, although the T and P-invariants are covered by com-
pletely nonzero elements, the rank of the incidence matrix is
less the value |T | than maybe a conflict situation that can be
caused by the construction of free choice from the vertex of
the place p3. So, with appropriate marking, the markers from
the top of the place p3 with a free choice of further path can
activate the top of the transition t4 and never start the top of
the transition t3. To eliminate unpredictable functioning, it is
necessary to rebuild the model so as to preserve the number
of triggering of the transition vertices (active actions), that
is, the value of the T-invariant T2b = [1, 2, 1, 1]T. An example
of the rebuilt model is shown in Fig. 2, b, where the structure
of the model is refined to ensure double activation of the top
of the transition t2 with a single actuation of the top of the
transition t3 and the structure of free choice, which can lead
to a dead lock, is eliminated. When calculating the invariants
and the rank of the incidence matrix, the following results
were obtained:

P b

T

2 3 1 1 1 3= [] ;

W b2

1 0 0 0

2 0 1 0

1 1 0 0

0 1 1 3

0 0 0 1

=

−
−

−
−

, rang W b2 4() = .

Thus, the invariants are completely covered by nonze-
ro values, as well as rang (W2b) = 4 = min(|T2b|,|P2b|), which
indicates complete controllability and compliance with the
properties of liveliness, reachability, safety and preservation.

One of the important characteristics of bounded Petri
nets, which ensure its reliable functioning, is preservation.
Each vertex of the place of Petri nets when modeling applied
systems is k-bounded, that is, it has a certain maximum
markup value that can be achieved in it, taking into account
the number of marks that remained from the previous steps
and the number of marks that are added at the current stage:
, # ' , .p I t p I tR h R hη η ξ0 ()() + ()() ≤

Naturally, absolute preservation is achieved in automatic
Petri nets, in which each transition has one input and one
output arc [10], the number of markers in such a network
does not increase and does not decrease during its operation.
Also, absolute preservation can be achieved provided that the
same number of input and output arcs are provided for each
vertex of the Petri net transition.

Definition 4. A Petri net PN with initial marking μ0 is
called strictly preservation if for all its markers μ¢ the follow-
ing condition is satisfied:

¢() = ()
∈ ∈

∑ ∑μ μ
p P

i i
p Pi i

p p . (2)

This condition imposes very strict restrictions, but when
modeling most applied problems, the number of markers in

Mathematics and Cybernetics – applied aspects

79

the model can increase and decrease during its operation.
Therefore, the preservation property of such models is
often evaluated not by the strict notion of preservation,
but by the weighted vector ω of positive integers (ωi ∈Z+)
defined for each marking. Vector elements allow to display
the number of marks that are simultaneously moving in the
Petri net. For example, in Fig. 3, a a Petri net is presented,
in which it is possible to balance the number of markers
in each marker, such a Petri net can be called loosely per-
sisted or persisted with respect to the weighting vector
ω = {ω1, ω2,…, ωn}.

Definition 5. Petri net PN with initial marking μ0 is
called preserved with respect to the weighting vector
ω = {ω1, ω2,…, ωn}, where n = |P| and ωi∈Z+, if the condition is
satisfied for all markings μ¢:

ω μ ω μi
i n

i i i
i n

p p¢ () = ()
= =
∑ ∑

{ , ,... } { . ,..., }

.
1 2 1 2

 (3)

For the Petri nets persisted with respect to the weighting
vector ω, it is important that the initial and final markings
coincide [21], which can be clearly demonstrated when
transforming it into a closed Petri net.

An example of Petri nets preserved with respect to
the weighting vector, which is able to restore the original
marking countless times, is a closed Petri net, an example
of which is shown in Fig. 3, b. The closed non-strictly pre-
served Petri net restores the original marking in six steps,
that is, μ0 = μ6.

The weighing vectors shown in Fig. 3, a, b for variants of
loosely preserved Petri nets, allow maintaining constant the
product ωiμi, which determines the preservation property of
the reduced models. For automated verification of this prop-
erty, the variant of the closed network model (Fig. 3, b) has
advantages, since it is easier to implement.

The languages of Petri nets are closed with respect to the
finite substitution [13, 14], which makes it possible to use
analyzed and debugged local models and construction prim-
itives for modeling complex systems, in the models of which
a certain vertex of a place can be replaced by a correspond-
ing local model or a certain template [14]. Replacement is
performed by merging the initial vertex of the place of the
embedded area, for example, the vertex with the vertex of the
place p3, into which the final substitution is performed, and
the final vertex of the place, the segments with a duplicate of
the same vertex p31 (Fig. 4).

t1

p0
p1

p2

t2

t3p3 ~ p31

t4

t5

t'1

p4

p5 p6

p'2

p7

p'1

p'3

t'2

t1

p0
p1

p2

t2

t'1

p'2p'1

p'3

t'2

t3

t4

t5

p4

p5 p6

p7

p3=p'1 p31=p'3

t1

p0
p1

p2

t2

t3p3 ~ p31

t4

t5

t'1

p4

p5 p6

p'2

p7

p'1

p'3

t'2

t1

p0
p1

p2

t2

t'1

p'2p'1

p'3

t'2

t3

t4

t5

p4

p5 p6

p7

p3=p'1 p31=p'3

b

a

Fig.	4.	Variants	of	assembling	local	models:		
a	–	final	substitution	into	the	vertex	of	the	place	p3;		

b	–	serial	connection

Also, when assembling debugged models, the design
shown in Fig. 4, b, if this corresponds to the logic of building
the model. When the embedded submodel has an initial ver-
tex of a location vertex, and its final vertex is a transition ver-
tex (as the p0–t6 model in Fig. 3, b is open), then it is embed-
ded according to the accepted method of constructing Petri
nets on a linear section between the corresponding transition
vertex and the subsequent adjacent location vertex.

5. 3. Conceptual model and combined approach to si-
mulation modeling of systems with parallelism

In the formation of the architecture of the combined
approach to the simulation modeling of systems with paralle-
lism (Fig. 5), the theoretical foundations were two paradigms
of simulation – discrete-event simulation and simulation of
dynamic systems.

The conceptual apparatus of the approach is made up of
parallel and competing processes, formal languages of L-type
and G-type Petri nets, which describe bounded Petri nets.
Also referred to the concepts are PN-patterns and tools,
which are a combination of safe, estimation and control Petri
nets for building design features of the model and intercon-
nections. Let’s call each subordinate model a submodel, and

the model into which submodels are
gradually assembled – a partial model
of the system. The sequential collection
of submodels into a partial model with
a convolution of submodel elements
will be called reduction.

To analyze the constructed compo-
nents of the model (submodels) and the
model as a whole, simulation modeling
and a matrix representation of their
structure [13], the method of inva-
riants [22] are used. To determine the
dynamic properties of the investiga-
ted submodels and partial models of
the system with parallelism, which are
formed at each stage of model col-
lection, the invariants and the rank
of the incidence matrix are calculated
and analyzed.

t1

p1

p2
p0

t2

t4
2

t3

3

3

p3

p4

p5
2

2

t5

p0

t1 t2 t3˄ t4 t5

3
0p1

p2

p3
p4
p5

0
0
0
0

1
1
2
0
0
0
34

0
0
3
1
0
0

0
0
0
1
1
0

0
0
0
0
0
3

3 6 4

μ0 μ1 μ2 μ3 μ4

t1

p1

p2
p0

t2

t4

t3

p3

p4

p5

t5

p0

t1 t2 t3t4 t5

1
0p1

p2

p3
p4
p5

0
0
0
1

0
1
1
0
0
1

23

0
0
1
1
0
0

0
0
1
0
0
1

0
0
0
0
1
0

3 2 3

t6

p6

p7

p6
p7

0
0

0
0

0
0

1
0

1
0

0
0
0
0
0
1

2

1
1

1
0
0
0
0
1

3

0
0

t6μ0 μ1 μ2 μ3 μ4 μ5 μ6

i i
 a b

Fig.	3.	An	example	of	loosely	preserved	Petri	nets

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (112) 2021

80

The elements of the combined approach to modeling sys-
tems with parallelism are two groups of principles. The first
group includes principles related to the structural structure
of the model:

– principles of structural similarity;
– the principle of structural conflictlessness [23].
The second group includes the principles that determine

the features of modeling and analysis of the dynamic proper-
ties of the model:

– the principle of strict monotony of model markings;
– the principle of block modeling;
– the principle of sequential reduction of partial models.
Thus, the principle of structural similarity greatly simplifies

the verification of a model in a mixed mode (analytically and
visually), the principle of structural conflict-free allows to cor-
rect errors in building a model based on a list of rules [23]. The
principle of strict monotonicity of markings makes it possible to
unambiguously describe the functioning of the model and check
important properties of the system, such as controllability and
boundedness. The principle of block modeling, used in the alge-
bra of processes [24], hierarchical networks [13] and the com-
ponent-oriented approach to the design of software systems, al-
lows the process of building and researching a simulation model
of a system with parallelism in stages. The principle of reduction
of partial models allows one to reduce the dimension of the
investigated model for its analysis by the method of invariants.

The conceptual model of synthesis
and analysis of systems with paral-
lelism (Fig. 5) reflects a step-by-step
process of building, testing and debug-
ging a model with parallelism. At the
beginning of the process of synthesis
and analysis of a model of a system with
parallelism, an architectural solution
is built that reflects a general idea of
the system at the time of setting the
problem and will be refined. The next
step is the construction and adjust-
ment of submodels, which allows to ob-
tain model components that consist of
a relatively small number of elements
and allow to prepare submodels for
the analysis of dynamic properties on
a network and matrix representation.
Based on the configured submodels,
their simulation is carried out, which
allows to check the logic of the model’s
functioning, as well as the presence of
potentially dangerous structures, for
example, dead locks and traps.

A dead lock state in the model ari-
ses if the final markup is not achieved
and, at the same time, there are no pre-
requisites for triggering any transition.
It can occur, for example, when one
process requires a resource, is current-
ly being used by another process, or
when there are insufficient resources
to initiate a particular process. The
trap will not lead to an explicit termi-
nation of the functioning of the model
or to a state of dead lock, but the final
result of the simulation will not be
achieved.

After simulation, the submodels are analyzed on a matrix
representation using the invariants method, which allows
to check the main dynamic properties of submodels. Also,
with invariant analysis, one can detect signs of potentially
dangerous scenarios for the functioning of the model, for
example, such as a hidden dead lock, the analysis of which is
demonstrated on the model shown in Fig. 2.

At the fourth stage, to obtain a model of a system with
parallelism, a phased recomposition of submodels into a par-
tial model is carried out. At the same time, the analysis of
inter-component connections is carried out, which is carried
out on the matrix representation of the partial model using
the method of invariants and the rank of the incidence matrix.
The difference between this stage and the second stage is not
only the object – a partial model, as opposed to a submodel,
but also the need to convolve the elements of the partial
model with the wrapping method in order to reduce the di-
mension of the model for invariant analysis.

The last fifth composite conceptual model provides
for the simulation of a model of a system with parallelism
as a whole, while the convolution of subordinate models
is also used, provides the ability to analyze the network
model and its matrix representation by the method of in-
variants. If certain elements need to be checked against
the background of simulating the entire system, they can
be detailed.

Fig.	5.	Architecture	of	the	combined	approach	to	the	simulation	modeling		
of	systems	with	parallelism

Discrete-event modeling Modeling of dynamic systems

• Parallel and concurrency processes.
• Formal languages of L-type and G-type Petri nets.
• Bounded Petri nets, PN patterns.
• Matrix representation of the network model.
• Invariant analysis of the network model.

Principles

• Structural similarity to the modeled system.
• Structural conflictlessness.

• Strict monotony of model markings.
• Block modeling.
• Consistent reduction of partial models.

Theoretical basis

Сoncepts

Conceptual model of synthesis and analysis of systems with parallelism

Step-by-step
recomposition, analysis

of intercomponent
connections

Simulation and
analysis of the

model as a whole

Simulation
modeling and

analysis of
submodels

 Sinthesis and
debuging of
submodels

Architectural

solution
Synthesis and

debugging

S
tru

ct
ur

e
D

yn
am

ic
s

Methods and techniques for simulating systems with parallelism

Mathematics and Cybernetics – applied aspects

81

6. Discussion of the research results of modeling tools
and analysis of systems with parallelism

The paradigms of simulation modeling are analyzed. It
is proposed to create an approach to modeling software sys-
tems based on a combination of two paradigms of simulation
modeling: discrete-event modeling and modeling of dynamic
systems. The means of discrete-event modeling are repre-
sented by bounded Petri nets, on the basis of which local
models of design solutions are built, analyzed in a simulation
experiment. Modeling dynamic systems allows to get an
unambiguous mathematical description of the network mo-
del in matrix form and calculate the value of invariants, the
analysis of which allows to determine the dynamic characte-
ristics of the model.

The features and limitations of formal languages of Petri
nets are described, which made it possible to estimate the
limitations of the characteristics of formal languages of L-type
for describing models of software systems. This made it pos-
sible to define the properties necessary for complementing
L-type languages as G-type properties for representing design
decisions. In particular, the extended language LG-type (1)
has no restrictions on the initial and intermediate markings,
which refer to a finite set of final markings. Thus, the limita-
tion of WF networks [11], described by L-type languages,
was extended. Selected interpretations of bounded Petri nets
for constructing combined modeling tools for systems with
parallelism that have greater modeling power than WF nets.
These are safe, estimation and control Petri nets that allow to
overcome the drawbacks indicated in [19]. Also, the proposed
Petri nets can have a finite set of controlling vertices, it allows
describing parallel and competing processes that are formed
during the operation of software applications.

The properties of bounded Petri nets are analyzed, de-
scribed by the class of formal languages of the LG-type, such
as liveness, reachability, boundedness and preservation. In
particular, the reachability property can be used to define
dead-end markings (Fig. 2). The complete controllability of
the model is evidenced by the coverage of all elements with
T- and P-invariants by nonzero values together with the
equality of the rank of the incidence matrix of the minimum
dimension of the cardinality of the sets of vertices of transi-
tions of the vertices of places. To ensure the predictability of
the functioning of the model, the property of loose preserva-
tion is applied (3). The preservation of bounded Petri nets
with respect to the finite substitution allows them to be used
to form local models, which are then assembled (Fig. 4) into
an integral model of the software system.

Principles for a combined approach to the simulation
modeling of systems with parallelism have been formulated.
They allow to analyze the model at all stages of working with
it, and also lay the foundation for a conceptual model for the
synthesis and analysis of systems with parallelism. Unlike
partially matched elements of analysis [6, 7] and modifi-
cations of Petri nets with unproven properties or hidden
elements [15–18], the proposed conceptual model allows to
combine the necessary means of synthesis and analysis of
a model with parallelism. These are means of an explicit
graphical description of the model, its analytical represen-
tation, which allows to identify unforeseen situations and
determine the structures of the model that cause. This con-
ceptual model makes it possible to propose and test design
solutions that will ensure the operability and predictability
of the functioning of the system under study.

On the basis of the above-mentioned components, the ar-
chitecture of the combined approach for the step-by-step con-
struction of the components of the system model with paral-
lelism is formed, and on their basis the formation of an integral
model of the software system is presented. This approach takes
into account the limitations of the dimension of local models
up to 40–45 elements of the largest set of the sets T and P,
determines the maximum dimension of the incidence matrix.
For the formation of an integral model of the system and its
analysis, the recomposition of partial models is provided.

The disadvantages of the combined approach should be
attributed to the rather laborious construction of submodels
and a model of the software system. To reduce this disadvan-
tage, it is possible to form design templates that are often
found in models of software systems.

The prospects of this study are the addition of tools with
elements of temporary Petri nets, also refer to bounded Petri
nets, as well as automated generation of templates to correct
areas of the model with unpredictable behavior.

7. Conclusions

1. It is proposed on the basis of a combination of two par-
adigms of simulation modeling: discrete-event modeling and
modeling of dynamic systems to build a combined approach
and tools for modeling systems with parallelism. The analysis
of the formal languages of Petri nets made it possible to de-
termine the features and limitations of the L-type language
for constructing tools for modeling systems with parallelism.
Bounded Petri nets, which are described by the formal lan-
guage of the LG-type, allow to expand the modeling power in
comparison with the tools based on the L-type languages, it
is important when modeling software systems. In particular,
the proposed tools allow to start simulation modeling from
any markup, refers to a finite set of final markings. It is also
possible to create a finite number of control vertices, the
layout of which has to be restored at the end of the model
simulation session.

2. The technique for identifying a conflict situation on
the example of a hidden dead lock using the invariant method
and analysis of the incidence matrix is presented. It allows to
analyze the causes of the dead lock, propose a correction to
the model and check its dynamic properties. So, if a critical
situation can arise in the model, the coverage of the compo-
nents of the T- and P-invariants by nonzero elements is not
enough, it is necessary that the rank of the incidence matrix
is equal to the smallest dimension with the cardinality of the
sets of transition vertices |T | or tops of places |P |.

3. Principles and conceptual model for the development
of the architecture of a combined approach to the simula-
tion modeling of systems with parallelism are formed. The
conceptual model allows to analyze the model of a software
system using simulation tools. It also provides for the use of
analytical representation, which creates the basis for auto-
mated model verification when building and simulating the
functioning of software tools in conditions close to real ones.
The principles concerning the structure of the model allow
for self-checking when building the components of the model
and visual analysis of sections of the model when identifying
conflict situations. The principles relating to the dynamics
of the model make it possible to provide an analysis of the
dynamic properties of both the components of the model and
private models and the model as a whole. This is important to

Eastern-European Journal of Enterprise Technologies ISSN 1729-3774 4/4 (112) 2021

82

provide a holistic analysis of the software system model, espe-
cially when there are many parallel and competing processes.
The possibility of applying in the combined approach the
principles of constructing hierarchical Petri nets, which are

described by formal languages of the G-type, makes it possi-
ble to comply with the requirements of resilience to changes
and scalability for software systems. These properties are
important in the development of modern software systems.

References

1. Stoian, V. A. (2008). Modeliuvannia ta identyfikatsiya dynamiky system iz rozpodilenymy parametramy. Kyiv: Kyivskyi universytet, 201.

2. Strogalev, V. P., Tolkacheva, I. O. (2008). Imitatsionnoe modelirovanie. Moscow: Izd-vo MGTU im. N.E. Baumana, 280.

3. Samarskiy, A. A., Mihaylov, A. P. (2001). Matematicheskoe modelirovanie. Idei. Metody. Primery. Moscow: Fizmatlit, 320.

4. Suprunenko, O. (2013). Paradigms of simulation modeling in studying complex parallel systems. Eastern-European Journal of

Enterprise Technologies, 5 (4 (65), 63–67. Available at: http://journals.uran.ua/eejet/article/view/18353/16394

5. Sergienko, I. V. (2018). Mathematical and program modelling of complicated systems using supercomputer technologies. Visnik

Nacional’noi’ Academii’ Nauk Ukrai’ni, 3, 39–48. doi: https://doi.org/10.15407/visn2018.03.039

6. Karpov, Yu. G. (2005) Imitatsionnoe modelirovanie sistem. Vvedenie v modelirovanie s AnyLogic 5. Sankt-Peterburg: BHV-

Peterburg, 400.

7. Braude, E. (2004). Tekhnologiya razrabotki programmnogo obespecheniya. Sankt-Peterburg: Piter, 655. Available at: http://www.

immsp.kiev.ua/postgraduate/Biblioteka_trudy/TekhnologiyaRazrabProgrBraude2004.pdf

8. Van Hee, K. (2002). Workflow management: models, methods, and systems. The MIT Press. doi: https://doi.org/10.7551/

mitpress/7301.001.0001

9. Karpov, Yu. G. (2010). Model Checking. Verifikatsiya parallel’nyh i raspredelennyh programmnyh sistem. Sankt-Peterburg:

BHV-Peterburg, 560.

10. Kuzmuk, V. V., Suprunenko, O. A. (2014). The means for the description of information flows in dynamic models of medical hard-

ware-software systems. Theoretical & Applied Science, 7 (15), 11–18. doi: https://doi.org/10.15863/tas.2014.07.15.2

11. Van der Aalst, W. M. P. (2013). Business Process Management: A Comprehensive Survey. ISRN Software Engineering, 2013, 1–37.

doi: https://doi.org/10.1155/2013/507984

12. Jensen, K., Rozenberg, G. (Eds.) (1991). High-level Petri Nets: Theory and Application. Springer, 724. doi: https://doi.org/10.1007/

978-3-642-84524-6

13. Kuz’muk, V. V., Suprunenko, O. O. (2010). Modifitsirovannye seti Petri i ustroystva modelirovaniya parallel’nyh protsessov.

Kyiv: Maklaut, 252.

14. Peterson, Dzh. (1984). Teoriya setey Petri i modelirovanie sistem. Moscow: Mir, 264.

15. Lomazova, I. A. (2004). Vlozhennye seti Petri: modelirovanie i analiz raspredelennyh sistem s obektnoy strukturoy. Moscow:

Nauchniy mir, 208.

16. Lomazova, I. A. (2009). Adaptivnoe i dinamicheskoe modelirovanie potokov rabot na osnove vzaimodeystvuyuschih setey Petri.

Metody i sredstva obrabotki informatsii. Trudy ІІІ Vserossiyskoy nauchnoy konferentsii. Moscow: Izdatel’skiy otdel fakul’teta

vychislitel’noy matematiki i kibernetiki MGU, 32–37.

17. Bashkin, V. A. (2012). Approximating bisimulation in one-counter nets. Automatic Control and Computer Sciences, 46, 317–323.

doi: https://doi.org/10.3103/s014641161207005x

18. Bashkin, V. A. (2017). On the Resource Equivalences in Petri nets with Invisible Transitions. Petri Nets and Software Engineer-

ing (PNSE’17). Zaragoza, 51–68.

19. Belusso, C. L. M., Sawicki, S., Roos-Frantz, F., Frantz, R. Z. (2016). A Study of Petri Nets, Markov Chains and Queueing Theory

as Mathematical Modelling Languages Aiming at the Simulation of Enterprise Application Integration Solutions: A First Step.

Procedia Computer Science, 100, 229–236. doi: https://doi.org/10.1016/j.procs.2016.09.147

20. Kuz’min, E. V., Sokolov, V. A. (2005). Vpolne strukturirovannye sistemy pomechennyh perekhodov. Moscow: Fizmatlit, 176.

21. Hack, M. (1975). Decision Problems for Petri Nets and Vector Addition Systems, Computation Structures Group Memo 95, Project

MAC. Massachusetts Institute of Technology, Cambridge, Massachusetts, March 1974, pp. 79. revised as Memo 95-1, August 1974;

Technical Memo 59, Project MAC, Massachusetts Institute of Technology, Cambridge, Massachusetts, March 1975, pp. 7.

22. Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77 (4), 541–580. doi: https://doi.org/

10.1109/5.24143

23. Suprunenko, O. O. (2019). Combined approach to simulation modeling of the dynamics of software systems based on interpretations

of Petri nets. KPI Science News, 5-6, 43–53. doi: https://doi.org/10.20535/kpi-sn.2019.5-6.174596

24. Nesterenko, B. B., Novotarskiy, M. A. (2007). Algebra protsessov dlya modelirovaniya slozhnyh sistem s real’noy rabochey nagruzkoy.

Reiestratsiya, zberihannia ta obrobka danykh, 9 (4), 49–59.

