BOOK OF ABSTRACTS

International Conference

DIFFERENTIAL EQUATIONS, MATHEMATICAL PHYSICS
AND APPLICATIONS

October 17–19, 2017, Cherkasy, Ukraine

Vinnitsia 2017

Accepted by the Academic Council of the Bohdan Khmelnytsky National University of Cherkasy, minutes N1, 30.08.2017, and by the Academic Council of the Vasyl’ Stus Donetsk National University, minutes N10, 29.09.2017.

Disclaimer. This book of abstracts has been produced using author-supplied copies. The content of this book does not necessarily reflect the views of the Program Committee or Editors and neither does it imply any endorsement. Editing has been restricted to some corrections of spelling and style where appropriate. No responsibility is assumed for any claims, instructions or methods contained in the abstracts: it is recommended that these are verified independently.

CONFERENCE ORGANIZERS

– Ministry of Education and Science of Ukraine
– Bohdan Khmelnytsky National University of Cherkasy
– Vasyl’ Stus Donetsk National University
– Institute of Mathematics of NAS of Ukraine
– Institute of Applied Mathematics and Mechanics of NAS of Ukraine
– Physical and Technical Institute of NAS of Belarus
– G.V. Kurdyumov Institute for Metal Physics of NAS of Ukraine

PROGRAM COMMITTEE

Andriy Gusak, Cherkasy
(Co-chairperson)
Anatoliy Samoilenko, Kyiv
(Opposition)
Oleksandr Boichuk, Kyiv
Kateryna Buryachenko, Vinnytsia
Marek Danielewski, Krakow
Zoltan Erdelyi, Debrecen
Boris Khina, Minsk
Rafal Kozubski, Krakow
Yuriy Lyashenko, Cherkasy
Anatoliy Martynyuk, Kyiv

Oleksii Mazko, Kyiv
Yuliya Mishura, Kyiv
Anton Naumovets, Kyiv
Juern Schmelzer, Rostock
Vitaliy Slyn’ko, Kyiv
Igor Skrypnik, Sloviansk
Andriy Shishkov, Sloviansk
Valentin Tatarenko, Kyiv
Gnana Bhaskar Tenali, Florida
Anatoliy Zagorodniy, Kyiv
Tetyana Zarorzhets, Cherkasy
Alexander Zuyev, Magdeburg

© Vasyl’ Stus Donetsk National University, 2017
Suvorova I.G., Investigation the hydrodynamics of flows in channels of complex geometric forms .. 84
Trofymenko O.D., Convolution equations and two-radii theorems for solutions of linear elliptic equations with constant coefficients in the complex plane 85
Vorobyova A., Group analysis of wave equation with special right-hand side 87
Yehorchenko I., Relative differential invariants and invariant equations equations 88

STOCHASTIC DIFFERENTIAL EQUATIONS 90
Borysenko O.D., Borysenko D.O., Global solution to stochastic logistic equation 90
Buchak Kh.V., Sakhno L.M., Investigation of properties of time-changed Poisson processes 91
Doobko V.A., Derivation of the diffusion equation in random fields from the special Langevin equation ... 92
Ivanov I.L., Correlation results for some foreign exchange markets 93
Kozachenko Yu.V., Petranova M.Yu., Simulation of the Ornstein-Uhlenbeck process ... 94
Lohvinenko S.S., Parameters estimation in fractional Vasiiev model 95
Osychuk M.M., Portenko M.I., Jump theorem and its applications 97
Pashko A., Vasylyk O., Accuracy of simulation of fractional Brownian motion in $L_p([0,T])$ and $C([0,T])$... 98
Pryhara L.I., Shevchenko G.M., Regularity of solution to the wave equation with a coloured stable noise ... 100
Radchenko V.M., Averaging principle for heat equation driven by general stochastic measure ... 101
Ralchenko K.V., Statistical inference for fractional Ornstein-Uhlenbeck process 102
Ralchenko S.A., Existence and uniqueness of solutions to stochastic differential equations driven by fractional Brownian field 103
Rozora I.V., Some properties of impulse response function 105
Sakhno L.M., CLT for quadratic forms for random fields with tapered data and asymptotic properties of minimum contrast estimators 106
Shklyar S., Ralchenko K.V., Mishura Yu., Maximum likelihood estimation of the drift slope of a Gaussian process 107
Tsukanova A.O., On comparison theorem for the Cauchy problems to neutral stochastic integro-differential equations 107
Yamnenko R.E., Yaneyvych T.O., Some properties of random processes from Orlicz spaces of exponential type 110

MATHEMATICAL PROBLEMS OF PHYSICS AND MATERIALS SCIENCE 111
Auzinger W., Adaptive integration of large linear systems of Schrödinger type with time-dependent coefficients using Magnus-type methods 111
Bezpalchuk V., Kozubski R., Gusak A., Simulation of the tracer diffusion and ordering kinetics in FCC structures - Stochastic Kinetic Mean-Field Method 112
Bhat A.P., Dhoble S.J., Rewatkar K.G., Effect of rare earth doped metamatrial towards the antenna miniaturisation and substrate primitive 113
Bobrov O., Pasichnyy M., Gusak A., Size effect on distributions of times to failure and times to transformations 114
Bondarchuk S.V., Minaev B.F., First principles DFT study of structural, electronic and mechanical properties of two-dimensional nitrogen monolayers 115
Borisenko A., Nominal vs. active supersaturation of solutions 116
Gavriliuk A.M., Kachurik I.I., Hermitian Hamiltonian built from Non-Hermitian position/momentum operators, and deformed oscillators 117
Gokhman O., Terentyev D., Kondrea M., Investigation of the post-irradiation annealing on the defect structure of tungsten 117
where: \(p(k,tt) = \frac{\gamma(k,tt)}{\Gamma(k)} \), \(\Gamma(k) = \gamma(k, +\infty) \), \(\gamma(k,tt) = \int_0^x t^{k-1}e^{-x}dx \).

7. In the case \(G >> 1 \) we can limit ourselves to the formation and growth of single pore.

Then we suggest some heuristic considerations: The time to reach a certain probability \(P \) with the failure criterion \(X_{\text{threshold}} \), approximately equal:

\[
 tt \approx T_1 + T_2,
\]

were \(T_1 \) - waiting time of pore nucleation, \(T_2 \) - growth time of the single pore. \(T_1 = -\ln(1-P), T_2 \approx \frac{L(X)}{G} \).

If we make the transition to dimensional units, then:

\[
 t \approx (-\ln(1-P) + \frac{f(X)}{\nu L^2}) \frac{1}{\nu L^2} \approx -\ln(1-P) + f(X) \frac{L}{V}.
\] \hspace{1cm} (4)

Acknowledgements. This work was supported by the Marie Curie International Research Staff Exchange Scheme Fellowship IRSES within the 7th European Community Framework Programme under Grant 612552; Ministry of Education and Science of Ukraine under Grant 0115 U 000638 and Grant 0117 U 000577.

References

First principles DFT study of structural, electronic and mechanical properties of two-dimensional nitrogen monolayers

Sergey V. Bondarchuk, Boris F. Minaev

Department of Chemistry and Nanomaterials Science
Bohdan Khmelnytsky National University of Cherkasy
Cherkasy, Ukraine
e-mail: bfmin@rambler.ru

The single-bonded 2D nitrogen allotropes of the honeycomb (A7) and zigzag sheet (ZS) topology are calculated by density functional theory (DFT). The optical, thermodynamic and elastic properties of these 2D sheets have been calculated for the first time. Phonon dispersion calculations have justified these structures as vibrationally stable 2D materials. The IR spectroscopy can not be useful in the characterization of the studied materials, while the Raman spectroscopy can be effectively applied for the experimental spectral identification. (the calculated IR intensity completely failed for detection). The UV absorption spectra prediction demonstrates complete opacity of the A7 and ZS monolayers to the UV irradiation above 9 and 6 eV (140 and 210 nm), respectively. Thus, the studied materials are predicted to be transparent to visible light. Calculations of NMR magnetic shielding tensors indicates that the electron density arrangement around the nitrogen nuclei in the studied polynitrogen sheets is much denser compared to the N2 molecule. The elastic constants reveal a robust mechanical stability of the studied 2D nitrogen allotropes and the calculated Young moduli values are only twice as lower than that of the graphene molecule.