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Ostwald ripening with non-equilibrium vacancies
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Abstract

Ripening in non-dilute binary solutions is analyzed by taking into account the influence of non-equilibrium vacancies, generated by
non-equal intrinsic fluxes of the components. A mathematical model has been developed for both coherent and incoherent precipitates.
In the case of coherent precipitates the ripening kinetics demonstrates three stages, with the second stage characterized by a time expo-
nent closer to 1/2 than to 1/3. The standard deviation of the particle size distribution is larger than that for a Lifshitz–Slyozov–Wagner
distribution.
� 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ostwald ripening, which is defined as the growth of large
particles at the expense of small ones of a dispersed phase
in a matrix, is driven by the tendency of a system to reduce
the total interfacial energy. The first commonly accepted
theory of ripening was developed by Lifshitz, Slyozov,
and Wagner (LSW theory) [1,2]. In LSW theory, the ripen-
ing of the particles of pure component B in a dilute binary
solution of AB is considered by using the mean-field
approximation and steady-state solution of the diffusion
equation around each particle. The LSW theory predicts
that the average particle size changes with time as

hRi3 � hR0i3 ¼
4

9
Dat; ð1Þ

where a = ceq2rX/kT is the Gibbs–Thomson factor, D the
diffusivity, r the surface tension, and ceq the equilibrium
concentration at the flat interface with the new phase. Un-
der the assumed condition that cA � cB in the parent
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phase, D is treated as the diffusivity of species B in the par-
ent phase of AB.

However, in the general case the treatment of D requires
a more careful analysis. Among the most extensively stud-
ied systems are Ni-based alloys (for example, Ni–Al), in
which the parent phase can be a concentrated solution
(for example, of Al in Ni), or even an intermetallic phase
(IMC) of Ni3Al or NiAl; these are not dilute solutions at
all. For such systems, D is usually treated as the coefficient
of chemical diffusion (interdiffusion) determined from Dar-
ken�s theory. The ripening kinetics may be used as a tool
for determining the value of D. In [3], a corresponding
method of determining the coefficient of interdiffusion
was proposed.

In Darken�s theory the coefficient of interdiffusion has
the following form:

~D ¼ ðcAD�
B þ cBD�

AÞu; ð2Þ
where DB* and DA* are the self-diffusivities of species B
and A, respectively, and u is the thermodynamic factor.
The results of Darken�s theory were obtained under the
assumption of local vacancy quasi-equilibrium [4]. It was
assumed that the vacancy concentration is equal to its equi-
librium value ceqV . However, this assumption is not always
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true because Kirkendall voids have been observed in many
cases of interdiffusion. The void formation is due to super-
saturation of non-equilibrium vacancies in the region of the
interdiffusion zone. The question arises as to whether the
application of Darken�s assumption to the ripening theory
is always correct or not.

Considering that ripening is a very slow process, it has
been suggested that non-equilibrium vacancies have time
to ‘‘escape’’ to sinks and, therefore, the approach of local
vacancy equilibrium is valid. However, the difference of
the mobilities of A and B atoms should constantly generate
local vacancy fluxes and, therefore, local deviations from
equilibrium.

For example, if a precipitate (rich in B component) is
overcritical and, hence, is growing, it means that the con-
centration of species B near the interface is lower than
the mean-field value. Thus, in the vicinity of a precipitate
the intrinsic flux of B (in the parent lattice reference frame)
is directed to the particle, and the flux of A is in the oppo-
site direction. If the mobility of B atoms is larger than that
of A atoms, the intrinsic flux of B will be larger than the
flux of A. This difference of intrinsic fluxes will generate
the vacancy flux in the same direction as that of A (out
of the particle). Therefore, the depletion of vacancies and
the corresponding vacancy concentration gradient should
be formed in the vicinity of the precipitate. This vacancy
gradient will influence the fluxes of the main species,
decreasing the larger intrinsic flux of B and increasing the
smaller intrinsic flux of A. In the standard approach the
vacancy sinks/sources are assumed to have absolute effi-
ciency, providing a very fast relaxation of vacancy concen-
tration in each point and making all deviations of vacancy
concentrations from equilibrium negligible.

If the ‘‘length of the mean free path’’ of vacancies to
sinks is comparable to interparticle distance in ripening,
such deviations from equilibrium should not be neglected.
If the interparticle distance is about a few tens or even hun-
dreds of nanometers, vacancies have a good chance to
migrate between precipitates without being annihilated at
sinks. For larger ratios of intrinsic diffusivities (DA/DB) lar-
ger deviations from equilibrium could be expected. For
intermetallic phases the ratio DA/DB may be very different
from unity. For example, in the NiAl system, the deviation
of composition from the stoichiometric value leads to a
sharp increase of the mobility of the majority component
[5]. Consequently, the fluxes of A and B may be very differ-
ent from each other and a significantly uncompensated flux
of vacancies can be generated in the vicinity of each precip-
itate, leading to their redistribution and a change of the
fluxes of the two components. In order to achieve the equi-
librium vacancy concentration, an efficient network of
sources and sinks is required.

To our knowledge, the first consistent treatment of
interdiffusion taking into account non-equilibrium vacan-
cies was proposed by Nazarov and Gurov [6–8]. However,
they did not take into account the sinks and sources explic-
itly. The coefficient of interdiffusion was given as
DNG ¼ D�
AD

�
Bu

cAD�
A þ cBD�

B

ð3Þ

and it coincided with the well-known expression for inter-
diffusivity in ionic compounds (Nernst–Planck equation).
Later, in [9] a more general approach was proposed, treat-
ing the system with limited efficiency of vacancy sinks/
sources in a diffusion couple. It was demonstrated that
the very initial stage of interdiffusion is governed by an
effective diffusivity according to Eq. (3) (controlled by the
slow species). At a late stage it is governed by Darken�s
interdiffusivity, and at an intermediate stage (for annealing
time t � sV/cV, where sV is the vacancy relaxation time and
cV the vacancy concentration) diffusion is non-parabolic
and even non-local.

In the following, we apply the ideas mentioned above to
ripening in non-dilute solutions. Namely, we treat the rip-
ening in a system where a mass transfer is controlled by
interdiffusion with significantly different mobilities of spe-
cies and with limited vacancy sink/source efficiency.

2. Ripening kinetics with non-equilibrium vacancies

Consider the ripening of a set of spherical particles with
equilibrium concentration ccB (phase c) in a solid solution of
AB (phase a). The balance equation for the flux JB of B at
the interphase boundary of R is

nað�JBÞ4pR2 dt ¼ ðncccB � nacaBÞ4pR2 dR. ð4Þ
Assuming na = nc, we obtain

dR
dt

¼ � JBðRÞ
ccB � caB

. ð5Þ

As is shown in Appendix A, the fluxes of A and B and
vacancies in the laboratory reference frame taking into ac-
count non-equilibrium vacancies (but without Manning�s
corrections) are the following [9]:

XJA ¼ ~DrcB � ðD�
B � D�

AÞ
cAcB
cV

rcV;

XJB ¼ �~DrcB þ ðD�
B � DA� Þ cAcB

cV
rcV;

XJV ¼ ðD�
B � D�

AÞurcB � DVrcV.

8><
>: ð6Þ

(Of course, in a laboratory reference frame the fluxes of A
and B are equal in magnitude, as it should be due to the
conservation of matter.)

Thus, the redistribution of atoms and vacancies in such
a system can be described by the following set of equations:

ocB
ot ¼ ~Dr2cB � ðD�

B � D�
AÞ

cAcB
cV

r2cV;

ocV
ot ¼ �ðD�

B � D�
AÞur2cB þ DVr2cV � cV�ceq

V

sV
.

8<
: ð7Þ

Here, we consider only the last stage of ripening when all
concentrations in the parent phase are close to equilib-
rium values. Then all concentration gradients are small,
and we can linearize Fick�s second law by taking the dif-
fusivities out of spatial derivatives and treating them as
constants.
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Since ripening is a slower process than the diffusion
between precipitates, we can use the standard steady-state
approximation (ocB/ot � 0, ocV/ot � 0) for B and vacan-
cies. Then:

~Dr2cB � ðD�
B � D�

AÞ
cAcB
cV

r2cV ¼ 0;

�ðD�
B � D�

AÞur2cB þ DVr2cV � cV�ceq
V

sV
¼ 0.

8<
: ð8Þ

Using some simple algebra, we obtain from Eq. (8)

r2ðcV � ceqV Þ ¼
1

k2
ðcV � ceqV Þ ð9Þ

with

k2 ¼ L2
V

DNG

~D
; ð10Þ

where LV ¼
ffiffiffiffiffiffiffiffiffiffiffi
sVDV

p
is the length of the mean free path of

vacancies and DNG is the interdiffusivity for the system
with zero efficiency of vacancy sinks (LV ! 1), as given
by Eq. (3).

Eq. (9) represents a screening-type equation. Its stan-
dard solution in the spherically symmetrical case has the
following form:

ĉV � cV � ceqV ¼ A
r
e�

r
k ð11Þ

and k has the meaning of a screening length, which is re-
lated to the efficiency of sinks and sources of vacancies.

Using Eqs. (11) and (8), we obtain the expressions for
$2cB, $cB, and cB:

o

or
r2
ocB
or

� �
¼ A

ðD�
B � D�

AÞ
k2 ~D

cAcB
cV

re�
r
k; ð12Þ

ocB
or

¼ 1

r2
K1 � A

ðD�
B � D�

AÞ
k2 ~D

cAcB
cV

k2 1þ r
k

� �
e�

r
k

� �
; ð13Þ

cB ¼ �K1

r
þ K2 þ A

ðD�
B � D�

AÞ
~D

cAcB
cV

1

r
e�

r
k. ð14Þ

The three unknown parameters A, K1, and K2 can be deter-
mined from three boundary conditions. Two of the condi-
tions are introduced by analogy with the LSW theory:

(1) The concentration of B at a long distance from a par-
ticle (mean-field approximation) is given as

cðr � RÞ ¼ �c. ð15Þ
(2) The Gibbs–Thomson equation for the equilibrium

concentration of B at the interphase boundary yields

ceqB ðRÞ ¼ ceqB þ a
R
; ð16Þ

where ceqB is the equilibrium concentration for a flat
interface.

A third condition can vary, depending on the interface
structure. As a first possibility, we consider zero vacancy
flux at the interface:

JVjR ¼ 0 ð17Þ
and frozen lattice diffusion inside the precipitate. This cor-
responds to the case of coherent precipitates without effec-
tive sinks and sources, so vacancies are just reflected back
into the parent phase.

The second possibility is assuming local vacancy equilib-
rium at curved interfaces, satisfying the Gibbs–Thomson
relation for vacancies. A short analysis of such a case is
presented in Appendix B.

Substituting the values obtained for A, K1, and K2 into
Eq. (6) and using Eq. (5), we obtain the following rate of
particle growth or shrinkage:

dR
dt

¼
D� a

R

ðccB � caBÞR
�
DNG 1þ R

k

� �
1þ DNG

~D
R
k

; ð18Þ

where D ¼ �c� ceqB is the supersaturation.
We introduce the following special abbreviation:

Def ¼
DNG 1þ R

k

� �
1þ DNG

~D
R
k

. ð19Þ

With this notation, Eq. (18) is very similar to the rate equa-
tion in the LSW theory, but with the effective diffusivity
depending on particle size; if k � R, then Def tends to be
DNG (growth controlled by the slow species), and if
k � R, Def tends to be Darken�s value of ~D (growth con-
trolled by the fast species).

Analysis of effective diffusivities shows that one might
expect a special regime of ripening in the following interval
of average sizes:

1 � hRi
k

�
~D

DNG

or

ffiffiffiffiffiffiffiffiffi
DNG

~D

r
� hRi

LV

�

ffiffiffiffiffiffiffiffiffi
~D

DNG

s0
@

1
A. ð20Þ

These conditions correspond to a large ratio of ~D=DNG.
Under this condition one can easily see that for precipitates
with sizes not very far from the average one, the effective
diffusivity is proportional to the particle radius, i.e.

Def ¼
DNG 1þ R

k

� �
1þ DNG

~D
R
k

� DNG � R
k
. ð21Þ

In this case, the growth/shrinkage equation becomes simi-
lar to Hillert�s equation for grain growth yielding the par-
abolic growth law instead of the 1/3-power law:

dR
dt

¼ DNG

k

D� a
R

ðccB � caBÞ
; hRi � t1=2. ð22Þ

At an initial stage, with a small average particle size,
hRi < hR1i ¼ LVðDNG=~DÞ1=2, one might expect LSW-type
ripening, but with a rate determined by DNG (controlled
by slow species) instead of Darken�s interdiffusivity. At
the last stage, when hRi � hR2i ¼ LVð~D=DNGÞ1=2 the
LSW regime should be realized again, with a rate now
being determined by Darken�s interdiffusivity (controlled
by the fast species). Of course, these analytical consider-
ations show only the trends, since, for example, at ÆRæ
satisfying inequality (20), small precipitates with R 6 k
may exist.
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3. Results and discussion

The main characteristics of ripening kinetics were inves-
tigated using computer simulations. In our model for an
array of precipitates we calculated a time behavior of sizes
by solving a set of differential equations (Eq. (18)) for
growth/shrinkage of each particle. This equation was writ-
ten and solved for cubed size instead of linear size just to
escape zero in the denominator, when a particle is
disappearing:

dR3½i	
dt

¼ 3
R½i	D� a
ðccB � caBÞ

�
DNG 1þ R½i	

k

� �
1þ DNG

~D
R½i	
k

; i ¼ 1; . . . ;N . ð23Þ

Also, the phase volume conservation condition (at asymp-
totic stage)

XN
i¼1

dR3½i	
dt

¼ 0 ð24Þ
Fig. 1. Time dependence of the average radius ÆRæ (in logarithmic scale).
(a) Stage 1, (b) Stage 2, (c) Stage 3.
was applied to calculate the supersaturation D at each time
step.

For convenience we used the reduced time variable:
t = 3DNGat. Sizes were taken in meters. Also a parameter
e � DNG=~D was introduced. Evidently, if e = 1, then
Eq. (18) transforms to the LSW equation for the cubed
radius. However, typically the value of e in concentrated
solutions or ordered phases can be about 0.1 or even less.
The initial average size was taken as (1/10)LV (we took
LxV = 1e � 7m). We used two types of initial size distribu-
tions. In the first case it was just a uniform random
Fig. 2. Time dependence of ÆRæ3. (a) Stage 1, (b) Stage 2, (c) Stage 3.
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distribution within the size interval (0.75ÆR0æ, 1.25ÆR0æ). In
the second case it was the LSW distribution. At least at
stages two and three the ripening kinetics was identical
for both types of initial conditions. Below we present the
results for the initial LSW distribution. The time depen-
dence of the average radius ÆRæ (on a logarithmic scale) is
shown in Fig. 1(a)–(c). Each plot was fitted to the linear
dependence ln ÆRæ = nln t + const.

In Fig. 2, the time dependence of cubed average size was
plotted separately for the three stages. In the first stage
ðhRi3 < hR1i3 ¼ L3

VðDNG=~DÞ3=2Þ, the best fit is given by a
linear time dependence of the cubed mean size
ÆRæ3 = kt + const (Fig. 2(a)).

At the intermediate (second) stage (Fig. 2(b); hR1i3 ¼
L3
VðDNG=~DÞ3=2�hRi3�hR2i3¼L3

Vð~D=DNGÞ3=2) better agree-
ment is obtained by a linear time dependence of the
squared mean size (Fig. 3). At the last stage (Fig. 2(c))
we again observe the linear time dependence of the cubed
mean size, but the rate is about 4.5 times larger than in
the first stage. These results agree with the analytic approx-
imations mentioned above. Namely, the first stage of ripen-
ing satisfies the 1/3 power-law but is controlled by the slow
species. The second stage is characterized by an exponent
of n � 0.4, which lies between the LSW (n = 1/3) and Hill-
ert�s (n = 1/2) values. The third stage is again of the LSW
type but now it is determined by the fast species and corre-
sponds to Ardell�s analysis [10]. Realistic experiments may
last too long to reach the third stage.

In addition, we plotted the particle size distributions
(Fig. 4) for each stage. At the second stage our histograms
are shown to be somewhere between the LSW and Hillert�s
distributions. The particle size distributions obtained were
analyzed by introducing special parameters, which charac-
terize width, slope, and sharpness of the peak: namely the
standard deviation s = (Æ(u � 1)2æ)1/2, skewness defined as
(Æ(u � 1)3æ)/s3, and Kurtosis K = (Æ(u � 1)4æ)/s4 � 3. The
dependence of parameter s on �R is shown in Fig. 5. Table
1 gives the generalized data for the particle size distribution
obtained and the LSW distribution.
Fig. 3. Time dependence of ÆRæ2 for Stage 2.

Fig. 4. Scaled particle size distribution f(u), u = R/ÆRæ. (a) Stage 1,
(b) Stage 2, (c) Stage 3.
4. Summary

The generation and relaxation of non-equilibrium
vacancies and their spatial distribution during ripening of
concentrated alloys may be important if:



Fig. 5. Dependence of the standard deviation s on average size ÆRæ.

Table 1
Values of the time exponent n and typical standard deviations s for the
calculated particle size distribution at each of the three stages as well as for
the LSW distribution

n S

Stage 1 0.36 0.246
Stage 2 0.407 0.265
Stage 3 0.34 0.230
LSW 1/3 0.215
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1) there is a significant difference between the mobilities
of the alloying additions,

2) the distance between precipitates is comparable to the
vacancy migration path,

3) the size of precipitates is within the interval defined
by Eq. (20).

Redistribution of vacancies around precipitates inhibits
the ripening rate at the ‘‘initial’’ stage and changes the time
exponent of ripening at the intermediate stage. It also leads
to a widening of the particle size distribution.
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Appendix A. Interdiffusion in a system with limited vacancy

sink efficiency

Consider the binary system AB (non-dilute solution B in
A) in which there is a non-equilibrium spatial distribution
of vacancies which builds up an additional driving force.
Then the fluxes of the species A and B and the vacancy flux
in the moving reference frame are obtained as:
XjA ¼ �LAArlA � LVArlV;

XjB ¼ �LBBrlB � LVBrlV;

XjV ¼ �LVVrlV � LAVrlA � LBVrlB.

8><
>: ðA:1Þ

The sum of the fluxes is equal to zero:X
i

ji ¼ 0. ðA:2Þ

Using Eq. (A.2), we obtain:

XjA ¼ �LAðrlA �rlVÞ;
XjB ¼ �LBðrlB �rlVÞ;
XjV ¼ LAðrlA �rlVÞ þ LBðrlB �rlVÞ;

8><
>: ðA:3Þ

where

LA ¼ cAD�
A

kT
; LB ¼ cBD�

B

kT

are Onsager coefficients. (Here we neglect Manning�s
corrections.)

The Gibbs–Duhem relation for our system implies

cArlA þ cBrlB þ cVrlV ¼ 0. ðA:4Þ
Assuming that cV�cA,cB, we find that

rlA ¼ � cB
cA

rlB. ðA:5Þ

Then

rðlB � lAÞ ¼ rlB �rlA ¼ 1

cA
rlB. ðA:6Þ

For the binary system

lB � lA ¼ og
ocB

; ðA:7Þ

where g is the Gibbs free energy per atom.
Substituting Eq. (A.7) in Eq. (A.6), we have

rlB ¼ cAr
og
ocB

� �
¼ cA

o2g
oc2B

rcB. ðA:8Þ

For vacancies, we have assumed:

lV ¼ kT lnðcV=ceqV Þ ðA:9Þ
and

rlV ¼ kT
cV

rcV. ðA:10Þ

Using Eqs. (A.8) and (A.10), we can find the relation for
the fluxes in a moving reference frame:

XjA¼D�
A
cAcB
kT g00rcBþD�

A
cA
cV
rcV;

XjB¼�D�
B
cAcB
kT g00rcBþD�

B
cB
cV
rcV;

XjV¼�ðjAþjBÞ¼� �ðD�
B�D�

AÞcAcBkT g00rcBþ
cAD�

A
þcBD�

B

cV
rcV

� �
.

8>><
>>:

ðA:11Þ
Here, g00 = o2g/ocB

2. In the laboratory reference frame, the
fluxes of species are written as follows:

XJ i ¼ Xji þ ciu; ðA:12Þ
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where u is the Kirkendall velocity, and

u ¼ XjV.

Using Eqs. (A.11) and (A.12) and neglecting cVu in the
expression for the vacancy flux (since cV � 1), we obtain:

XJA ¼ ~DrcB � ðD�
B � D�

AÞ
cAcB
cV

rcV;

XJB ¼ �~DrcB þ ðD�
B � D�

AÞ
cAcB
cV

rcV;

XJV ¼ ðD�
B � D�

AÞurcB � DVrcV;

8><
>: ðA:13Þ

where

u ¼ cAcB
kT

g00

is the thermodynamics factor, ~D ¼ ðcAD�
B þ cBD�

AÞu is Dar-
ken�s interdiffusivity, and

DV ¼ cAD�
A þ cBD�

B

cV

is the vacancy diffusivity.

Appendix B

In the case of incoherent precipitates for which local
vacancy equilibrium is achieved at their curved interface,
the Gibbs–Thomson relation for vacancies yields:

ceqV ðRÞ ¼ ceqV þ aV
R
; ðB:1Þ

where ceqV is the equilibrium vacancy concentration at the
flat interface, and aV is the analogue of the Gibbs–Thomson
factor for vacancies.
In such a case, after simple but long algebraic calcula-
tions, determining the constants A, K1, and K2, we obtain
the following growth/shrinkage rate:

dR
dt

¼ ~D
D� aef

R

R
; ðB:2Þ

where

aef ¼ a� aV
D�

B � D�
A

~D

cAcB
cV

.

The form of Eq. (B.2) corresponds to the result of LSW
theory with a rescaled Gibbs–Thomson factor aef. The
power dependence �R � t1=3 remains, but the rate of growth
varies.
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