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ABSTRACT
Kinetic mean-field method for description of diffusion (introduced in 1990 by George Martin) is developed to 3D with the inclusion of the
frequency noise. After this, it is applied to modeling of reactive diffusion—formation, competition, and growth of the ordered intermedi-
ate phases during interdiffusion. Results seem reasonable; hence, the method can be used for qualitative study of complicated cases of the
competitive first-order transitions in closed and open systems with rigid lattices.
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I. INTRODUCTION: GENERAL PROBLEM
OF PHASE COMPETITION AND THE CHOICE
OF EVOLUTION PATH

Reactions between two solid materials or between solid and
liquid materials with formation of several solid phases (reaction
products) provide us with a problem which simultaneously is of
fundamental importance in physics, chemistry, and materials sci-
ence, and is a key to existing and developing technologies of joining,
with basic concern about reliability, production and exploitation of
composite materials, 3D-printers technologies, etc. When two ele-
ments A and B react, they can, as a rule, demonstrate (simultane-
ously or following some time sequence) the formation of several
intermediate phases AmBn, each of which has its own composi-
tion range determined by the interphase equilibrium conditions.
For example, reactions between liquid tin-based solder and cop-
per lead to almost simultaneous formation of two intermediate
compounds Cu6Sn5 and Cu3Sn.1 Scallops of the Cu6S5 compound
actually form and keep the contact after crystallization of solder.
The second phase layer—that of Cu3Sn, on the contrary, is a place
of the Kirkendall voids formation and, hence, finally leads to the
mechanical failure of solder joint. Thus, the dream of an engineer
would be to influence the phase formation, helping “useful” inter-
mediate phases to reach optimal sizes and suppressing “harmful”
phases.

From the physical point of view, solid state reactions are
just the phase transformations in the highly inhomogeneous
open system—contact zone, under sharp concentration gradient.
Historically, phase transformations had been studied as the pro-
cesses driven by the change of temperature or pressure. The phase
transformations driven by the change of concentration (due to dif-
fusion) are also very interesting. Moreover, the temperature time
derivative dT/dt (temperature ramp in a fixed time) is a very
important factor deciding what transformations will actually hap-
pen. High rate of temperature lowering (quenching) may suppress
practically all phase transformations. We claim that the concen-
tration gradient value dC/dx also provides a very important fac-
tor governing the phase formation and competition in the contact
zone.

From a physical point of view, competitive solid-state reac-
tions present a vivid example of the general problem of the choice
of evolution path.2 Discussion of this problem was started by Ost-
wald with his famous rule of stages3 and recently was general-
ized in terms of nucleation properties with account of general-
ized Gibbs’ approach.4–6 We will concentrate on the choice of
evolution path in the contact zone (in the field of concentration
gradients).

For example, in the thin film couple (or multilayer) A–B, in
the case of two intermediate compounds 1, 2 at the equilibrium
phase diagram, and with average composition corresponding to
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compound 2, the possible evolution paths can be, in general, the
following:

A + B→ A + 1 + 2 + B→ 1 + 2 + B→ 2,
A + B→ A + 1 + B→ 1 + B→ 1 + 2 + B→ 2,
A + B→ A + 2 + B→ A + 1 + 2 + B→ 2,
A + B→ A + 2 + B→ 2.

How does nature choose one of these paths? Our starting points of
analysis are as follows:

1. Usually, intermediate phase formation is a first-order transi-
tion starting from overcoming the nucleation barriers. So, the
first phase to appear should be the phase with minimal incuba-
tion period. And this, as a rule, corresponds to minimal sum of
nucleation barrier and activation energy of growth.

2. Even if all nucleation barriers are low, it does not mean
that nucleation stage is not important, since the minimum of
incubation period determines the phase which forms first.

3. Formation of the first phase may drastically change the con-
ditions for nucleation of the further phases. For example, let
intermediate compounds 1, 2 have large and close Gibbs free
energies of formation from pure A and B and, hence, have sim-
ilar chances to nucleate. Yet, if by some kinetic reason phase 1
nucleated and grew as a layer first, then phase 2 can form only
in the reaction 1 + B → 2, and for this reaction, the driving
force is substantially less. In this case, phase 2 may appear after
rather long waiting time.

4. Fastest nucleation of some phase does not mean that we will
observe it in the coarsened mesoscopic scale since diffusive
interaction of the new-born medium may, in some cases, lead
to the collapse of the already nucleated phase.

5. Choice of evolution path, at least in the contact zone, is deter-
mined by nucleation in the sharp concentration gradient, by
diffusive interaction with the new-born nuclei of other phases
and with inhomogeneous surrounding materials in the contact
zone.
The problem of the first phase to form and, in general, of the

phase formation sequence became popular with development of thin
films and multilayers technologies,7 especially in application to sili-
cides in microelectronics.8 It was very important to understand the
typical sequential, one-by-one phase growth in thin film reactions.
The story became even more interesting after discovery of solid-
state amorphization reactions,9,10 which demonstrated the growth
of metastable amorphous layer (absent at the equilibrium phase dia-
gram) instead of stable, “legal” intermetallics. Until 1979, the typical
explanation of the sequential growth was that the growth is in fact
simultaneous for all phases but most of the growing phases grow
so slowly (much slower than the fastest phase layer) that it is not
possible to fix and measure these phases. Such explanation could be
used in times of “micron-scale” reactive diffusion studies when the
standard tools of diffusion zone study had the resolution less than
one micron. Now, when 3D atomic tomography and HRTEM are
used,11,12 we know for sure that this explanation was wrong—most of
the intermediate phases which we do not see are indeed absent in the
thin-film diffusion couples. The first reasonable explanation of the
temporal absence of some phases was suggested in semi-quantitative
form by Geguzin et al. in Refs. 13 and 14. Explanation was based on

the possibility of interface-controlled kinetics of reactive growth at
the initial growth stage. The same idea, but in mathematically more
full and rigorous way was realized by Goesele and Tu three years
later, in 1982.15 Alternative analytic theories of kinetic and thermo-
dynamic suppression of nucleation by the neighboring phases and
by sharp concentration gradients were suggested and developed by
our group jointly with Desre, Hodaj, and Schmitz.16–28

The abovementioned theoretical predictions of the first phase
to grow and of the critical concentration gradient may well explain
the phase formation in Ni–Zr, Co–Al, Ni–Si, Cu–Si, Ni–Al, and
other systems.29–35 Yet, we still cannot see in situ the details of
phase competition and we still need some simulation tools which
could verify the existing theories of phase competition by computer
experiment, in addition to the real experiment.

It looks like in the last two years we got the necessary (fast
and effective) tool. It is a so-called SKMF (Stochastic Kinetic Mean
Field) method developed by the Cherkasy team jointly with a
team from Debrecen University.36 (Recently, the coauthor of the
SKMF method, Prof. Erdelyi, suggested an alternative transcript—
Stochastic Kinetic Modeling Framework.) This method is a natu-
ral development of the nonlinear kinetic mean-field model (KMF)
suggested by Martin in 1990.37 As was physically clear from the
very beginning and as rigorously proven in the present paper,
the KMF model can describe only processes with a continuous
decrease of the free energy up to a minimum. It means that
in the KMF model, the role and meaning of temperature are
realized only partially—providing atomic jumps, each of which
requires overcoming an activation barrier by some atomic-scale
fluctuations, but it does not provide the long-range fluctuations
leading to overcoming, say, the nucleation barriers. Therefore,
KMF cannot be used for a correct description of the first-order
phase transitions. To improve this obvious drawback, we sug-
gested introducing some noise—like a noise of forces in Brownian
motion. In our case, we decided to introduce the noise of fluxes
between sites (in terms of the noise of jump frequencies) as the
random deviations from the Boltzmann-like exponential expres-
sions. In this paper, we apply this new method to reactive dif-
fusion with several phase layers growing and competing in the
diffusion zone.

The paper is organized in the following way. In Sec. II, we ana-
lyze the main ideas of KMF–SKMF approach, especially the necessity
of noise for description of nucleation stage. In Sec. III, we con-
struct the phase diagram using self-consistently the KMF for the
diffusion couples consisting of neighboring crystalline FCC phases
at the phase diagram: A–ordered A3B, ordered A3B–ordered AB,
ordered AB–ordered AB3, and ordered AB3–B. To have a good and
distinct phase diagram for such a system, we use interatomic inter-
actions in two coordination shells—12 nearest neighbors and 6 next-
nearest neighbors. Then, we apply SKMF to reactive diffusion in
the incremental diffusion couples A–AB, A3B–AB3, AB–B (with one
growing intermediate phase), A–AB3, A3B–B (with two competing
intermediate phases), and A–B (with three competing intermediate
phases).

II. FROM KMF TO SKMF—WHY AND HOW
Well-known quasi-1D kinetic mean-field approach to the

problems of atomic migration in solids was suggested by George
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Martin in 1990.37 Namely, the master equation was constructed for
the probability Cp of finding atom A at the site belonging to plane
number “p.” This master equation implemented the balance of local
in- and out-fluxes for any site. Moreover, it self-consistently used
the mean-field approximation for calculation of energy barriers in
the jump frequencies (exchange mechanism was considered as an
example):

This model was applied by the Debrecen team to asym-
metric diffusion (big difference ∣VAA − VBB∣) in nanofilms with
sharp gradients of the jump frequencies. Among other effects, this
approach predicted a possibility of the sharpening of diffusion pro-
files (instead of traditional smoothening) and other nonlinear effects
at the initial stages of interdiffusion, in case of large diffusional
asymmetry.38,39

In Ref. 40, the generalization of Martin’s equations to the
3D-case was suggested. Namely, the following kinetic equations
have been suggested for “concentration” (probability) at the site “i”
surrounded by nearest neighbors (the sites indicated by “in”):

dCA[i]
dt

=
Z
∑
in=1

(−CA[i]CB[in]Γ[i(A), in(B)]

+ CB[i]CA[in]Γ[in(A), i(B)]). (1)

Here, the jumps are restricted (within Martin’s model) only to
the first coordination shell (exchanges between nearest neighbors).
Exchange frequencies between A and B in the neighboring sites “i”
and “in” are determined in Refs. 37 and 40 via Arrhenius law like

Γ[i(A), in(B)] = ν0 exp(−Qi,in

kT
)

= ν0 exp(−Es − (EA[i] + EB[in])
kT

), (2)

with the saddle-point assumed the same for all jumps, and with ener-
gies before jump calculated taking into account interaction only with
Z nearest neighbors (VAA, VBB, and VAB) and without any account
of correlations—in the mean-field approximation

EA[i] =
Z
∑
in=1

(CA[in] ⋅ VAA + CB[in] ⋅ VAB), EB[in]

=
Z
∑

inn=1
(CA[inn] ⋅ VBA + CB[inn] ⋅ VBB). (3)

A. Steady-state limit of 3D-modification of the KMF
In Ref. 37, the steady-state case of the kinetic equations in the

quasi-1D-scheme was considered. In the general 3D-case, we also
start from the steady-state solutions of Eqs. (1)–(3). Obviously, all
time derivatives (for all sites “i”) in Eq. (1) are equal to zero if the
detailed balance is satisfied

CA[i]CB[in]Γ[i(A), in(B)] = CB[i]CA[in]Γ[in(A), i(B)]. (4)

To make the detailed balance closer to thermodynamics, one
can reformulate Eq. (4) as

CA[i]
CB[i] exp(EA[i] − EB[i]

kT
) = CA[in]

CB[in] exp(EA[in] − EB[in]
kT

). (5)

Equation (18) can be interpreted as the equalizing of the
reduced chemical potentials within the system. (We remind that the
reduced chemical potential µ̃ = µA − µB means the change of Gibbs
free energy due to the substitution of atom B by the atom A)

µ̃[i] = µ̃[in] ≡ µ̃ = const. (6)

The reduced chemical potential, obtained from the condition-
Ref. 5 coincides with expressions obtained from the regular solution
model in the approximation of the nearest neighbors’ interaction.

µ̃[i] = µA[i] − µB[i] = kT ln
CA[i]
CB[i] + EA[i] − EB[i]

= kT ln
CA[i]
CB[i] − 2Vmix

Z
∑
in=1

CA[in] + Z ⋅ (VAB − VBB), (7)

µA[i] = kT ln CA[i]+EA[i]+const,µB[i] = kT ln CB[i]+EB[i]+const,

Vmix = VAB − (VAA + VBB)/2–mixing energy.

Martin’s kinetic equations tend to steady-state, and steady-
state in the closed system means equilibrium—stable or metastable.
Thus, Eq. (7) leads to the self-consistent set of non-linear algebraic
equations

CA[i] = (1 − CA[i]) exp(2Vmix

kT

Z
∑
in=1

CA[in])

× exp( µ̃ − Z ⋅ (VAB − VBB)
kT

), i = 1, . . . , N, (8)

with the constraint of matter conservation
N
∑
i=1

CA[i] = NC̄A. (9)

Equation analogic to Eq. (8) was suggested by Khachaturyan,
not using the steady-state condition but instead with arguments
of the Fermi-Dirac-type equation. He used this equation for his
method of concentration waves.41,42 Thus, limiting (steady-state)
case of Martin’s kinetic approach provides self-consistent mean-
field thermodynamics. In our applications in Sec. III, we will mod-
ify all mentioned schemes including interactions in the second
coordination shell.

B. Time evolution of free energy - Analog
of H-theorem

It is convenient to represent the kinetic equation (1) in terms of
exchanges between pairs of sites “i,” “in,” then the matter conserva-
tion will be guaranteed automatically

dCA[i]
dt

=
Z
∑
in=1

dCA
(i,in)

dt
,

dCA
(i,in)

dt
= −CA[i]CB[in]Γ[i(A), in(B)]

+ CB[i]CA[in]Γ[in(A), i(B). (10)

We call expressions dCA
(i,in)/dt the “partial” time derivatives.

They determine the rate of change of concentration in site “i” (and
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simultaneously the opposite change of concentration in neighboring
site “in”) due to exchanges only between these two sites. In case of
direct exchange between atom A at the site “in” and atom B at the site
“in” (change of CA[i] from zero to 1), change of Gibbs free energy
consists of two changes: µ̃AB[i] = µA[i]−µB[i] (change from A to B)
and −µ̃AB[in] = −µA[in] + µB[in]. For infinitesimal changes and for
their rate one obtains

dG
dt

=
NZ/2

∑
(i,in)

(µ̃AB[i] − µ̃AB[in])dCA
(i,in)

dt
. (11)

Substituting Eq. (7) for the reduced chemical potentials, and
Eq. (10) for the partial time derivatives, one gets, after elementary
transformations,

dG
dt

= −ν0 exp(− Es

kT
)kT

NZ/2

∑
(i,in)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CB[i]CB[in] exp(EB[i] + EB[in]
kT

)

×(ln(CA[i]
CB[i] exp(EA[i] − EB[i]

kT
)) − ln(CA[in]

CB[in] exp(EA[in] − EB[in]
kT

)))

×(CA[i]
CB[i] exp(EA[i] − EB[i]

kT
) − CA[in]

CB[in] exp(EA[in] − EB[in]
kT

))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12)

This expression for the Gibbs free energy evolution looks more
transparent in terms of the reduced chemical potentials [introduced
according to Eq. (7)]:

dG
dt

= −ν0 exp(− Es

kT
)

NZ/2

∑
(i,in)

CB[i]CB[in] exp(EB[i] + EB[in]
kT

)

×(µ̃AB[i] − µ̃AB[in])(exp( µ̃AB[i]
kT

) − exp( µ̃AB[in]
kT

)). (13)

Obviously, the product ( f 1 − f 2)(exp(f 1) − exp(f 2)) is pos-
itive for any values f 1, f 2, except the case f 1 = f 2 when this
product is zero. Therefore, expression ( µ̃AB[i]

kT − µ̃AB[in]
kT )(exp( µ̃AB[i]

kT )
− exp( µ̃AB[in]

kT )) in Eq. (13) is always positive except the case of
equilibrium, when it is zero. Therefore, in a kinetic mean-field
model

dG
dt

∣
KMF

≤ 0 (= 0 at equilibrium). (14)

Thus, indeed, overcoming of nucleation barriers in KMF-
model is impossible. In the mentioned product, the first factor (dif-
ference of reduced chemical potential between neighboring sites)
is the driving force of exchange, and the second factor (the differ-
ence between exponents of reduced chemical potentials divided by
kT) corresponds to the general nonlinear expression for the flux of
exchanging atom. Thus, one has a common structure of nonequilib-
rium thermodynamics (products of driving forces and fluxes), but
in the nonlinear version. Therefore, the nonlinear Martin’s model
works effectively for the initial stages of diffusion in case of sharp
concentration gradients. It could predict a possibility of concentra-
tion profile sharpening instead of smoothening.38,39 Thus, we just
proved that the KMF equation may describe only the minimiza-
tion of the free energy. Any other process related to overcoming
the free energy barrier, cannot be described by KMF. To model
the evolution from the metastable state to the stable state by over-
coming of the nucleation barrier, one should introduce some noise.

In principle, noise can be added (2) only for initial conditions (this
version was initially suggested in Ref. 40) and (2) dynamically, at
each time moment.

C. Stochastic development of KMF
In linear theories of nonequilibrium thermodynamics, the

noise of concentration and of order parameter is usually intro-
duced within the Onsager approach, using the FDT (fluctuation-
dissipation theorem)—see, for example, Khachaturyan et al.41,42 Yet,
this method has some limitations:

(1) Onsager approach for atomic local fluxes is not fully self-
consistent: Onsager coefficients and their activation energies
are not related to the local compositions. Conditions of zero
fluxes or of steady-state in such schemes never provide any
equation of state like Eq. (21) or (11), contrary to the KMF
approach.

(2) Order parameter fluctuations in standard stochastic
approaches are introduced independently of concentration
fluctuations. On the contrary, in Martin’s approach the order
is not something independent—we do not need to introduce
it additionally, it is contained fully in the unary probabilities
at the sites and sublattices.

(3) It seems natural to introduce the fluctuations of the jump
frequencies as a true source of the noise.

In 2016, the SKMF-method based on the introduction of the
noise of intersite fluxes was suggested19 (see also skmf.eu)

dCi

dt
= −

Z
∑
j=1

[Ci(1 − Cj)(Γi,j + δΓLang
i,j ) − (1 − Ci)Cj(Γj,i + δΓLang

j,i )],

(15)

δΓLang
i,k = An√

dt

√
3(2random − 1). (16)
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This Langevin noise of local fluxes (in terms of the noise of
frequencies) is introduced without any time or spatial correlations

⟨δΓLang
i,j (t)δΓLang

k,m (t′)⟩ = A2
nδikδjmδ(t − t′). (17)

We started by checking the model for the simplest case of an
ideal solution and found that

(a) composition dispersion is proportional to the squared fre-
quency noise amplitude, An;

(b) fixed non-zero frequency noise amplitude in SKMF is equiv-
alent to the averaging over certain finite number Mruns of
runs of Monte Carlo simulation, inversely proportional to the
squared noise amplitude;

(c) zero noise is equivalent to the infinite number of copies in the
canonical ensemble, and it is a mean-field limit of SKMF.

SKMF was used to describe the peculiarities of spinodal decom-
position, nucleation, precipitation, and ordering.36,43–45 Here, we
check the applicability of the method to the phase growth and
competition in reactive diffusion.

III. APPLICATION OF SKMF TO THE MODELING
OF PHASE GROWTH AND COMPETITION DURING
REACTIVE DIFFUSION

In this paper, we simulate by SKMF method an interdiffusion
with the formation of ordered intermediate phases in the diffusion
couple consisting of two FCC-materials with the coherent inter-
face between them. At the phase diagram, we expect 3 intermediate

ordered phases—A3B, AB3 (with ordered L12–structure), and AB
(with ordered L10–structure). Our plan is the following:

1. Construction of the phase diagram, including the equilibrium
concentration steps in the couples containing the neighboring
phases: A–A3B, A3B–AB, AB–AB3, and AB3–B.

2. Study of single intermediate phase formation and growth
kinetics in the incremental diffusion couples: a growth of A3B-
phase in the couple A–AB [Fig. 1(b)], a growth of AB in the
couple A3B–AB3 [Fig. 1(a)], and growth of the phase AB3 in
the couple AB–B. We state in advance that after averaging
over some evolution details, the growth well obeys a parabolic
time law, indicating that the quasi-equilibrium conditions are
satisfied.

3. Therefore, it seems natural to further study the interdiffusion
within the intermediate ordered phases A3B, AB, and AB3.
In particular, the interdiffusion coefficient inside each phase
will be determined by the standard Matano method, using the
concentration profiles obtained by simulation.

4. After this, we study the competition between two intermedi-
ate phases—namely, between A3B and AB in the couple A–
AB3 [Fig. 1(c)] and between AB and A3B in the couple A
“B-B.” In particular, we study the influence of the diffusion
asymmetry M = (VAA − VBB)/2 on such competition (this
parameter correlates with lower and higher melting points for
A and B).

5. Finally, we study competition of all three intermediate phases
A3B, AB and AB3 in the diffusion couple A–B.

FIG. 1. General pictures of the phase for-
mation in the incremental diffusion cou-
ples: (a) formation of AB (two antiphase
domains) between A3B and AB3, (b) for-
mation of A3B between A and AB, (c)
formation of two phase layers A3B and
AB between A and AB3, (d) formation
of three phase layers A3B, AB and AB3
between A and B.

J. Chem. Phys. 150, 174109 (2019); doi: 10.1063/1.5086046 150, 174109-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

6. We study phase competition at (a) far stages when growth
becomes parabolic but before reaching the depletion stage of
the marginal materials; (b) initial stage when only one phase is
growing and others are still suppressed.

7. The results of the simulation are compared with the existing
phenomenological theories and hypotheses.

A. Peculiarities of SKMF application to interdiffusion
and ordering in FCC structures with an account
of interactions in two coordination shells

In Ref. 46, an application of KMF to interdiffusion with order-
ing in BCC diffusion couple with very high concentration gradients
and high diffusion asymmetry. It was found that under such condi-
tions, the ordered B2 phase may appear first with the composition
which is rather far from the stoichiometric on (50/50). This result
was obtained only for the second-order transitions since KMF can-
not describe the nucleation of the first-order transformations (as
discussed in Sec. III).

Thus, it is natural to study the first-order transitions, including
reactive diffusion, using our SKMF method. To have more distinct
phases, we modified the above-described SKMF method to include
the interactions in two coordination shells. So, our kinetic equations
remain the same as in Eq. (15),

dCi

dt
= −

Z
∑
j=1

[Ci(1 − Cj)(Γmean−field
i,j + δΓLang

i,j )

−Cj(1 − Ci)(Γmean−field
j,i + δΓLang

j,i )],

but the energies under exponents of frequencies are now calculated
in a modified way

Γmean - field
i,j = Γ0 exp(−Ei,j

kT
), (18)

where the energies are calculated in the middle field approximation
for the two coordination spheres

Ei,j = (MI − V I)
ZI
=12
∑
l=1

Cl + (MI + V I)
ZI
=12
∑
n=1

Cn

+ (MII − V II)
ZII
=6
∑
l=1

Cl + (MII + V II)
ZII
=6
∑
n=1

Cn, (19)

where V I(II)
α,β (α,β = A, B) pair interaction energies with ZI = 12

nearest (I) and ZII = 6 next nearest (II) neighbors in, respectively,
first and second coordination shells, MI(II) = (V I(II)

AA − V I(II)
BB )/2–

asymmetry parameters, V I(II) = V I(II)
AB − (V I(II)

AA + V I(II)
BB )/2–mixing

energies, Γ0 = ν0 exp(−Es+ZI
(V I

AB+V I
BB)+ZII

(V II
AB+V II

BB)

kT ) (ν0–attempts

frequency, ES–saddle-point energy, taken in KMF the same for
all jumps), δΓLang

i,j –noise of jump frequency. As before, we take
δΓLang

i,j = An
√

dt

√
3(2random − 1), where An is a noise amplitude, dt–

nondimensional time step. Alternatively, we may choose the noise
distribution as Gaussian with the same dispersion—it gives the same
results.

1. Local order parameter
Binary FCC-alloy with negative mixing energy in the first

coordination shell and positive mixing energy in the second coor-
dination shell has the tendency to the ordering of L12 type or
L10 type, depending on composition. In our model, we do not
need to introduce order parameter field and write some special,
Landau–Khalatnikov–type kinetic equations for it, since in KMF
and in SKMF, the order parameter η can be always calculated
from the local values of concentrations at sites belonging to dif-
ferent sublattices. Here, we have two problems. The first prob-
lem is that usually, we do not know in advance to what sublat-
tice this or this site belongs. The second problem is the contra-
diction between the general definition of the order parameter, for-
mulated for large crystals, containing the macroscopic number of
sites,

η = pI
A − C̄A

1 −NI/(NI + NII) (20)

and local character of our new-defined order parameters in the con-
tact zone, often changing strongly from one site to the neighboring
one.

According to Refs. 43 and 44, for example, for the phase L12
(A3B or AB3) of FCC-lattice the local order parameter can be intro-
duced in the following way. Minority sublattice is a simple cubic
array of sites (vertexes). Majority sublattice consists of other three
simple cubic sublattices forming the centers of the cube facets. Since
we do not know to what simple cubic sublattice the arbitrary cho-
sen site belongs, we should calculate four versions of the order
parameter and then to choose the version with maximal absolute
value

η = max(η1, η2, η3, η4), (21)

η1,2,3 =
(C(i) + (e2,3,1 + e3,1,2)/4)/3 − (C(i) + e/4)/4

4
, (22)

η4 = −4
(C(i) − (C(i) + e/4)/4)

3
, (23)

where e = e1+e2+e3, e1, e2, e3–three sums, each over 4 neighboring
sites in one of the planes (100), (010), (001).

We introduce some threshold value ηcr of order parameter:
if η(i) > ηcr , then site i belongs to the ordered phase. The extent
of ordering is measured as the ratio of the number of sites with
overcritical order parameter to the total number of sites

ξ =
1
2 (Nx ⋅Ny ⋅Nz)

∑
1

θ(η − ηcr)/
1
2
(Nx ⋅Ny ⋅Nz), (24)

where θ(x) ≡ {
1, x > 0
0, x < 0

–Heaviside step function.

We will see below that the abovementioned way of descrip-
tion allows us to distinguish clearly the different phases to
measure the position and the shift of the interphase bound-
aries. All this can be done substantially faster than Monte Carlo
simulation.
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B. Choice of parameters: Construction
of the phase diagram
1. Thermodynamic mean-field model
and parameters

As mentioned above, we introduced additional interactions
with the second coordination shell—without this addition, the
ordering in L10 phase would be second-order transition and also
two-phase regions between phases would have too narrow con-
centration interval, and the intermediate phases homogeneity con-
centration ranges will be unrealistically broad, in comparison with
typical phase diagrams Our initial choice of energies was follow-
ing: V I

AA = V I
BB = −10−21 J, V I

AB = −3.9 ⋅ 10−21 J, V II
AA = V II

BB
= −8.76 ⋅ 10−21 J, and V II

AB = −2 ⋅ 10−21 J.

It is easy to construct the Gibbs free energy per atom depen-
dence on composition for all 5 phases. For solid solutions on the
basis of A and on the basis of B (actually, they are two parts of the
same phase), the dependence g(C) can be found just from regular
solid solution model but including interactions with next-nearest
neighbors

gdisordered = 6(CA ⋅ V I
AA + CB ⋅ V I

BB) + 3(CA ⋅ V II
AA + CB ⋅ V II

BB)
+ 12CACB ⋅ V I

mix + 6CACB ⋅ V II
mix

+ kT((CA) ln(CA) + (CB) ln(CB)). (25)

For the ordered L12 phase one gets, in mean-field approxima-
tion (but also with an account of the second shell)

gL12 = 6(CA ⋅ V I
AA + CB ⋅ V I

BB) + 3(CA ⋅ V II
AA + CB ⋅ V II

BB) + 12CACB ⋅ V I
mix + 6CACB ⋅ V II

mix +
3
4
(V I

mix −
3
2

V II
mix)η2

+
kT
4

⎛
⎜⎜⎜
⎝

(CA − 3
η
4
) ln(CA − 3

η
4
) + (CB + 3

η
4
) ln(CB + 3

η
4
)

+3(CB −
η
4
) ln(CB −

η
4
) + 3(CA +

η
4
) ln(CA +

η
4
)

⎞
⎟⎟⎟
⎠

. (26)

For the ordered L10 phase one gets, also in mean-field approximation,

gL10 = 6(CA ⋅ V I
AA + CB ⋅ V I

BB) + 3(CA ⋅ V II
AA + CB ⋅ V II

BB) + 12CACB ⋅ V I
mix + 6CACB ⋅ V II

mix + (V I
mix −

3
2

V II
mix)η2

+
kT
2

⎛
⎜⎜⎜
⎝

(CA +
η
2
) ln(CA +

η
2
) + (CA −

η
2
) ln(CA −

η
2
)

+(CB −
η
2
) ln(CB −

η
2
) + (CB +

η
2
) ln(CB +

η
2
)

⎞
⎟⎟⎟
⎠

. (27)

2. Construction of phase diagram according
to common tangents rule

Naturally, in Eqs. (26) and (27), we optimize g in respect to
order parameter at any fixed composition. Resulting curves at some

FIG. 2. Concentration dependences of Gibbs free energy per atom for basic solu-
tions and for three intermediate phases at temperature T = 750 K, and the common
tangents. Parameters: V I

AA = V I
BB = −10−21 J, V I

AB = −3.9 ⋅ 10−21 J,
V II

AA = V II
BB = −8.76 ⋅ 10−21 J, V II

AB = −2 ⋅ 10−21 J.

fixed temperature, together with common tangents, are demon-
strated at Fig. 2.

Respectively, at Fig. 3, one can find the part of the phase dia-
gram for the temperature interval (Tmin = 350 K, Tmax = 1350 K)
built according to the common tangents rule.

FIG. 3. Dependencies T–C for the margins of the concentration ranges of all
existing phases in AB system calculated by the common tangents rule.

J. Chem. Phys. 150, 174109 (2019); doi: 10.1063/1.5086046 150, 174109-7

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

We check the validity of the calculated equilibrium marginal
concentrations within our mean-field model by the alternative
method—the method of diffusion couples.

3. Measuring of equilibrium solubilities
and concentration ranges by simulation
of two-phase diffusion couples A–A3B, A3B–AB,
AB–AB3, and AB3–B

We constructed two diffusion couples consisting of neighbor-
ing phases (say, A–A3B or A3B–B) and “annealed” them in computer
experiment until reaching the final step-wise profiles, each plateau
of which corresponds to the composition of one phase, which is
in equilibrium with another plateau— composition of neighboring
phase. As a result, at temperature 750 K, we got the concentra-
tion intervals for all three intermediate phases and for two marginal
solutions—solution A(B) of B in A and solution B(A) of A in B,
which are presented in Table I and compared with the results of
common tangents method.

C. Measuring of Wagner integrated diffusion
coefficient DW = ¯̃D ⋅ ∆C

Kinetics of the phase growth and competition is determined not
just by the interdiffusion coefficients of the intermediate phases but
by their products with concentration ranges, ¯̃Di ⋅ ∆Ci (Wagner dif-
fusivities). We know that the Wagner diffusivities are, strictly speak-
ing, the integrals over the concentration ranges of the intermediate
phases4,47,48

DW = ¯̃D ⋅ ∆C =
CR

∫
CL

D̃(C)dC, (28)

where (CL, CR) is the equilibrium concentration range of the inter-
mediate phase. If we construct the diffusion couple consisting of two
halves with initial concentrations CL, CR we may apply the Matano
method for the diffusivity at composition within the mentioned
concentration range

D̃(C) = − 1
2t dc

dx ∣C

C

∫
CL

(x − xM)dc, xM =

CR

∫
CL

xdC

CR − CL
. (29)

To calculate the Wagner diffusivity, one has to integrate the Eq.
(29) once more over the concentration range

DW ≡
CR

∫
CL

D̃(C)dC = 1
2t

xR

∫
xL

dx
C(x)

∫
CL

(xM − x(c′))dc′ . (30)

In numeric form, it means

DW = (dx)2

2t

iR−1
∑
i=iL

i+1
∑
j=iL

(iM − j)(C[j + 1] − C[j]), (31)

where dx = x[i+1]−x[i], iM ≡
iR−1
∑

i=iL
i ⋅ (C[i + 1] − C[i])/(CR − CL).

To avoid the disturbance of the Matano results by the simul-
taneous reordering process, the unary probabilities at sublattices for
the initial moment is better to choose with an account of equilibrium
order parameter at given temperature and composition (to have
a shorter time of relaxation to the quasi-equilibrium order values
during interdiffusion).

For minority sublattice, C(i) = CL − 3η0/4, at iL ⩽ i < (iL + iR)/2
and C(i) = CR − 3η0/4, at (iL + iR)/2 ⩽ i < iR.

For majority sublattice, C(i) = CL + η0/4, at iL ⩽ i < (iL + iR)/2
and C(i) = CR + η0/4, at (iL + iR)/2 ⩽ i < iR.

We arranged three diffusion couples with compositions correspond-
ing to the marginal left and right compositions of each phase A3B
(0.737–0.754), AB (0.488–0.512), and AB3 (0.246–0.263) at 750 K.
Calculations according to Eq. (31) give the following values of DW

= ¯̃D ⋅ ∆C for these three intermediate phases:

DW(A3B) = 7.0 ⋅ 10−14 m2/s, DW(AB) = 7.8 ⋅ 10−14 m2/s,

DW(AB3) = 7.0 ⋅ 10−14 m2/s.

D. The growth of single intermediate phase
in the incremental couple A–AB
1. Simulation of the growth by SKMF method

We start simulation of reactive diffusion with the case of A3B
phase formation and growth in the incremental diffusion couple A–
AB. As we will see below, simulation results look very reasonable
producing formation and growth of the almost horizontal concen-
tration plateau with the width increasing with time according to
parabolic law. Intermediate concentration profile along the diffusion
direction (averaged over the planes perpendicular to this direction)
is shown at Fig. 4. Two plateau of A3B are present due to periodic
boundary conditions. A–B–A–B–. . .

TABLE I. Comparison of boundary concentrations (mole fraction of species A) obtained by two methods—diffusion couples and common tangents rule—at the temperature
750 K. For each phase, the concentration range is representation by two marginal concentrations CL (closer to B) and CR (closer to A).

Phase B(A) AB3 AB A3B A(B)

Concentration of A CL CR Width of phase CL CR Width of phase CL CR Width of phase
Method of diffusion 0.022 0.246 0.263 0.017 0.488 0.512 0.024 0.737 0.754 0.017 0.978
couple
Common tangents rule 0.021 0.246 0.264 0.018 0.491 0.509 0.018 0.736 0.754 0.018 0.979
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FIG. 4. Concentration profile along X-axis, obtained by averaging over Y and Z
(“i” counts the atomic planes.) We observe two-phase layers due to the periodic
boundary condition for the thin-film system.

Roughly speaking, the volume of the ordered intermediate
phase may be characterized just by the width of the plateau—if
the phases form parallel layers. Yet, at least at the initial stage, the
phase may grow laterally from the small island (nucleus), like in the
Stranski–Krastanov model. Therefore, more correct is to character-
ize the phase quantity by the number of sites with the local order
parameter larger than the adopted critical order value—see Eq. (24).
Local order for each site was calculated according to Eqs. (22) and
(23). We chose ηcr = 0.85 as the threshold value. In the computer
experiment, we were measuring the time dependences of the phase
A3B squared relative quantity ξ2(t). Such dependences at various
temperatures are given at Fig. 5(a). They are indeed parabolic after
some averaging over some “stop-and-go-like” details.

Alternatively, we try to measure the phase growth kinetics, con-
sidering composition instead of order. For phase A3B, it means that
we admit the concentration plane to belong to phase A3B if its aver-
age concentration lies in the interval between (0.5 + 0.75)/2 = 0.625

and (0.75 + 1)/2 = 0.875. Actually, most of these planes (except the
interface planes at the boundaries with neighboring phases) have
an average concentration between 0.737 and 0.754 (as in Table I).
Results for 750 K are shown in Fig. 5(b). One can see that the results
of the two methods are practically identical.

One can see that the growth is parabolic after some coarsening
procedure. In the detailed time scale this smooth growth looks like
step-like. At first, we were happy to imagine that we reproduced the
mode of growth with nucleation of each new atomic plane and fur-
ther lateral propagation of some local 2D-nucleus. Yet, the situation
looks more trivial and related to the introduction of threshold order
parameter: From time to time, the criterion η ≥ ηcr = 0.85 becomes
valid for the large group of atoms (say, whole atomic plane, due
to one-dimensional diffusion front), but the value η(t) was grow-
ing steadily simultaneously all the time. Step proceeds just in the
moment of simultaneous reaching the threshold. After approxima-
tion by the standard least squares regression procedure, one gets
parabolic law in the form

ξ2
A3B = kA3B

t
dt

. (32)

The parabolic rate constant kA3B satisfies (as expected) the Arrhenius
law (Fig. 6)

ln(kA3B(T)) = −QA3B ⋅
1
T

+ const. (33)

2. The analytic solution for the growth of single-phase
A3B in A–AB couple

If one neglects the solubilities of A in B and B in A, and takes
the concentration range of A3B phase to be narrow, then the flux bal-
ance equations for two interface boundaries and for the intermediate
phase width are following:

FIG. 5. Check of parabolic phase growth: (a) the squared relative quantity of intermediate ordered phase with η ≥ ηcr = 0.85 vs time at various temperatures, (b) the squared
relative number of atomic planes with corresponding average compositions vs time, at temperature 750 K.
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FIG. 6. The logarithm of the parabolic rate constant kA3B vs inverse temperature.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1
4
− 0)dxL

dt
= − D̃∆C

∆x
⇒ dxL

dt
= −4

D̃∆C
∆x

(1
2
− 1

4
)dxR

dt
= +

D̃∆C
∆x
⇒ dxR

dt
= +4

D̃∆C
∆x

⇒ ∆x2 = 16(D̃∆C)A3Bt.

(34)

In case of parallel layers of intermediate phases in the diffusion
couple with the periodic boundary condition, its squared relative
quantity is ξ = 2∆x/L so that

ξ2 = 4
∆x
L2

2
= 64dt

L2 (D̃∆C)A3B t
dt

. (35)

Equation (35) is a theoretical prediction under the condi-
tion of negligible solubilities. On the other hand, in simulation by
SKMF, the Eq. (32) is valid. Comparing Eqs. (32) and (35), one may
predict

kA3B
1 = (D̃∆C)A3B 64dt

L2 . (36)

From Eq. (36), one can estimate the Wagner integrated diffusion
coefficient (Wagner diffusivity)

(D̃∆C)A3B = kA3B
1

L2

64dt
.

Let us compare the results of our SKMF modeling and of
theoretical calculations

(Nx)2dX2

64dt
k =

104 ⋅ (1.25 ⋅ 10−10)2

64 ⋅ 10−9 ⋅ 3.19 ⋅ 10−5 = 7.8 ⋅ 10−14 m2/s.

As shown in Subsection III C, direct measurement of the
Wagner diffusivity by the modified Matano method gives

D̃∆C = 7.0 ⋅ 10−14 m2/s.

E. The growth of single intermediate phase
AB in the couple A3B–AB3

1. Simulation of AB formation by SKMF method
We construct our diffusion couple from two ordered phases—

A3B and AB3. We observe the formation and growth of the ordered
L10 phase. Characteristic concentration profile after some time is
shown at Fig. 7. The existence of peak at the plateau of the new grow-
ing phase is described very well by the formation of two antiphase
domains of AB-phase, and the peak corresponds to the boundary
between these two antiphase domains. See also Fig. 1(a).

Again, for the coarsened time scale, the growth law is parabolic:
ξ2

AB = kABt/dt.
At that, the parabolic growth rate obeys the Arrhenius law

ln(kA3B(T)) = −11762/T + const.

2. The analytic solution for AB growth kinetics
in A3B–AB3 couple

Flux balance at the moving interphase boundaries gives

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1
2
− 1

4
)dxL

dt
= − D̃AB∆c

∆x

(3
4
− 1

2
)dxR

dt
= +

D̃∆c
∆x

⇒ ∆x2 = 16(D̃AB∆C)ABt. (37)

Thus, the squared relative quantity of AB phase in the couple
with periodic boundary conditions (two plateaux) should depend on
time according to

kAB
1 = (D̃∆c)AB 64dt

L2 . (38)

From Eq. (38), one can estimate the Wagner integrated diffu-
sion coefficient (Wagner diffusivity)

(D̃∆C)AB = kAB
1

L2

64dt
.

Let us compare the results of our SKMF modeling and of
theoretical calculations (Nx)

2dX2

64dt kAB
1 = 7.4 ⋅ 10−14 m2/s.

As shown in Subsection III D 2, direct measurement of the
Wagner diffusivity by the modified Matano method gives D̃∆C =
7.8 ⋅ 10−14 m2/s.

Thus, SKMF method seems to be fully consistent with phe-
nomenological theory.

FIG. 7. Concentration profile, “i”—serial number of the atomic plane. Phase layer
AB consists of two antiphase sublayers.
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FIG. 8. Squared relative phases A3B and AB quantities vs time. Diffusion
asymmetry parameter M = 0.

F. Growth and competition of two intermediate
phases in the couple A–AB3

1. Kinetics of simultaneous two-phase growth
in the symmetric case, M = 0

Now, let us proceed with the case of two phases simultane-
ously trying to nucleate and grow. When interactions A–A and

B–B are symmetric in both coordination shells, M = 0, the growth
is indeed simultaneous and practically with the equal rate at each
temperature—see Fig. 8.

2. Influence of diffusion asymmetry parameter
on the competition of A3B and AV phases
at the late (parabolic) growth stage

Now, we start to play with the reduced asymmetry parame-
ter M̃ ≡ 2M/kT = (V I

AA − V I
BB)/kT (so far we “play” only with

parameters for the first coordination shell, to avoid too many reg-
ulating parameters). We will not change the V I

AB and will change
V I

AA, V I
BB symmetrically in opposite directions. If, say, M > 0,

it means that the absolute value of V I
AA is less so that atoms A

are expected to be less bonded (low-melting) and therefore, more
mobile. On the other hand, high mobility of low melting compo-
nent A increases compatibility of A-rich phase only if A forms the
majority sublattice of the ordered phase—and it is the case for A3B.
The ratio of the phase growth rates in usual (a) and in logarith-
mic scales (b) as a function of diffusion asymmetry is presented at
Fig. 9.

One can see that this dependence is close to exponential one

kA3B/kAB ≈ exp(4M̃) = exp(4
V I

AA − V I
BB

kT
). (39)

3. Suppression of A3B-phase at the initial stage
Time of AB delay (diffusional suppression by A3B phase)

exponentially depends on the asymmetry parameter [see Fig. 10(b)].

FIG. 9. Ratio of the phase growth rates in usual (a) and in logarithmic (b) scales vs reduced diffusion asymmetry parameter M̃ ≡ 2M/kT.
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FIG. 10. Suppression of phase AB by A3B: (a) delay of A3B growth at T = 750, M̃ ≡ 2M/kT = 0.7, (b) the logarithm of A3B suppression period vs the asymmetry parameter.

4. Analytic phenomenologic model of the phase competition at the late stage of parabolic growth

If one neglects the non-zero solubilities of A in B and of B in A, the concentration profile will be similar to shown in Fig. 11.
The flux balance equations give the growth equations for phase boundaries and for phase thicknesses

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1
4
− 0)dx21

dt
= −D1∆c1

∆x1

(1
2
− 1

4
)dx12

dt
= D1∆c1

∆x1
− D2∆c2

∆x2

(3
4
− 1

2
)dx23

dt
= D2∆c2

∆x2

⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d∆x1

dt
= 8

D1∆c1

∆x1
− 4

D2∆c2

∆x2

d∆x2

dt
= −4

D1∆c1

∆x1
+ 8

D2∆c2

∆x2
.

(40)

Equations (40) have a parabolic solution,

∆x1 = β1
√

t, ∆x2 = β2
√

t, Di∆ci ≡ DWi,

β1

β2
=

(DW1
DW2
− 1) ±

√
(DW1

DW2
− 1)

2
+ 16 DW1

DW2

4
≡ z, (41)

β1 =
√

16DW1 − 8DW2z,β2 =
√

16DW2 − 8DW1z.

5. Comparison of analytics and SKMF model
for two competing phases

a. Symmetric case (asymmetry parameter M = 0). Let us substi-
tute Wagner diffusivities into Eq. (40) and compare results with Sub-
section III E 2. In our case, β1 corresponds to A3B, and β2– to AB.
According to Subsections III C and III D 2 DW1 = 7.0 ⋅ 10 - 14 m2/s,
DW2 = 7.8 ⋅ 10−14 m2/s. Substitute these data into Eq. (40) and
get

FIG. 11. Schematic concentration profile in A–AB3 couple with growing phase
layers of A3B and AB.
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FIG. 12. Dependence ln(τ) on M̃ ≡ 2M/kT (symmetrically— for positive M).

β1

β2
=

( 7.0
7.8 − 1) +

√
( 7.0

7.8 − 1)2 + 16 ⋅ 7.0
7.8

4
= 0.92.

On the other hand, according to SKMF simulations [Fig. 10(a)],
β1/β2 ≡ kA3B/kAB is equal to 0.98. We see that correspondence is
good.

b. Asymmetric case. Now we try to understand the origin of
the empirical rule [Eq. (39)]. Let us compare energetics of A–B
exchanges in ideally stoichiometric A3B phase L12 and in ideally sto-
ichiometric AB phase L10. Let us consider only the energies within
the first coordination shell (since in our simulations we did not vary
the energies in the second coordination shell). Then, the energetic
barrier for A–B exchange in ideal L12 structure is

TABLE II. Dependence of suppression time on the reduced asymmetry parameter
M̃ ≡ 2M/kT.

M̃ ln(τ) M̃ ln(τ)

−1.0 10.38 1.0 11.10
−0.9 9.92 0.9 9.77
−0.8 9.88 0.8 9.63
−0.7 9.16 0.7 9.21
−0.6 8.68 0.6 8.89

Q(A3B) = Es − (EA[i] + EB[in]) ≈ Es − ((8VAA + 4VAB) + (12VBA))
= Es − (8VAA + 16VAB).

The energetic barrier for A–B exchange in ideal L10 structure
is

Q(AB) = Es − (EA[i] + EB[in])
≈ Es − ((4VAA + 8VAB) + (4VBB + 8VBA))
= Es − (4VAA + 16VAB + 4VBB).

Then,

Q(A3B) −Q(AB) ≈ −(8VAA + 16VAB) + (4VAA + 16VAB + 4VBB)
= −4(VAA − VBB).

Thus, in strongly asymmetric case

k(A3B)
k(AB) ≈ DW1

DW2
≈ exp(−Q(A3B) −Q(AB)

kT
)

≈ exp(4
VAA − VBB

kT
) = exp(4M̃).

It corresponds to Eq. (39) quite well.

G. Phase growth and competition in full couple A-B with three intermediate phases
Flux balances and growth rates

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1
4
− 0)dx21

dt
= −DW1

∆x1

(1
2
− 1

4
)dx12

dt
= DW1d1

∆x1
− DW2

∆x2

(3
4
− 1

2
)dx23

dt
= DW2

∆x2
− DW3

∆x3

(1 − 3
4
)

dx3β

dt
= DW3

∆x3

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d∆x1

dt
= 8

DW1

∆x1
− 4

DW2

∆x2

d∆x2

dt
= −4

DW1

∆x1
+ 8

DW2

∆x2
− 4

DW3

∆x3

d∆x3

dt
= −4

DW2

∆x2
+ 8

DW3

∆x3

.
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FIG. 13. The ratio of parabolic rate constants kA3B/kAB3 (a) and their logarithms (b) as the functions of the reduced asymmetry parameter M̃ ≡ 2M/kT and the approximation
by an exponential (a) or linear (b) dependences.

If M = 0, then DW 3 = DW 1⇒ ∆x3 = ∆x1; therefore,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d∆x1

dt
= 8

DW1

∆x1
− 4

DW2

∆x2
,

d∆x2

dt
= −8

DW1

∆x1
+ 8

DW2

∆x2
.

(42)

The parabolic solution of this set of equations gives the following
prediction at M = 0:

∆x2

∆x1
= −1

2
(1 − 1

2
DW2

DW1
) +

√
1
4
(1 − 1

2
DW2

DW1
)

2
+

DW2

DW1
. (43)

In particular, at DW 2/DW 1 ≈ 1, it gives ∆x2/∆x1 ≈ 0.78.
Similar to the competition of two phases, in this case of three

competing phases, the influence of diffusion asymmetry is clearly
seen at the initial stage. Contrary to the previous case, phase AB is
always suppressed at the initial stage—by A3B or by AB3, depending
on the sign of asymmetry. Time of suppression, again, exponentially
depends on asymmetry (Fig. 12). For positive M, the dependence is
almost symmetric (see Table II).

For the stage of simultaneous growth, the ratio of parabolic
constants is presented at Fig. 13 as the functions of 2M/kT.

IV. CONCLUSIONS
1. Martin’s kinetic mean-field (KMF) model and its 3D mod-

ification may lead only to the decrease of free energy (or

constant free energy in equilibrium). Proof of this property has
a structure similar to Boltzmann H-theorem. Thus, KMF can-
not provide the first-order transformations with overcoming
the nucleation barrier.

2. Adding the frequency noise (instead of concentration noise)
and transition to SKMF improves this flaw and gives a reason-
able description of the first-order transitions.

3. SKMF model allows us to model (using even very limited
computational resources) the growth and competition of one,
two, three intermediate phase layers in the process of reactive
diffusion.

4. The results of SKMF simulations fully correlate with phe-
nomenological theory of reactive diffusion at the growth stage.
Moreover, it predicts the temporal suppression of some phases
and the exponential influence of the diffusion asymmetry
parameter on the suppression time at the initial stage.

5. Our next step will be the check of the theories of intermediate
phases nucleation in the sharp concentration gradients.

6. SKMF might also be a proper tool to check the alternative
theories of nucleation.49,50
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