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Abstract
The formation of a solid solution hollow nanoshell from core–shell structure and collapse of
this nanoshell into a compact particle is modelled by a phenomenological scheme and by Monte
Carlo simulation. The cross-over between formation and collapse, and the criteria of nanoshell
formation are analysed.
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1. Introduction

Void formation upon reactive diffusion in samples with a
closed geometry (cylindrical or spherical) has been known
for a long time. It is a common feature of interdiffusion in
binary systems and is most frequently related to the difference
of partial diffusivities of the components. Such a difference
leads to a difference of intrinsic atomic fluxes (in the lattice
reference frame) creating the vacancy flux directed toward a
faster component. Since the vacancy flux has some spatial
distribution (with a maximum in the vicinity of the initial
contact zone), it has nonzero divergence, leading to a local
accumulation of vacancies on the fast component side and a
depletion of vacancies on the slow component side. If vacancy
sinks at the fast component side are not effective enough then
extra vacancies should gather into voids. Such voiding should
be especially pronounced in spherical and cylindrical samples
when the faster component is situated inside (figure 1(a)).

This possibility was realized by Aldinger [1], who
obtained hollow shells of a BeNi alloy after annealing Be
microparticles coated with Ni. Moreover, Geguzin, in his
monograph ‘Diffusion Zone’ (1979) reported the formation of
hollow intermetallic wires by the reaction Cd + Ni → Cd23Ni5

in a Cd wire covered by Ni [2, 3]. The authors of [2, 3]
ascribed this phenomenon to a large step in molar volume in
the intermetallic formation (about 8%).

In 2004 void formation in spherical samples was
rediscovered at the nanolevel in [4–6]. Hollow nanoshells

of cobalt and iron oxides and sulfides have been obtained by
means of a reaction of metallic nanopowders with oxygen or
sulfur. Contrary to [2, 3], these results have been explained
by the Frenkel effect—out-diffusion of metal through the
forming spherical layer of the compound is faster than in-
diffusion of oxygen or sulfur through the same phase. This
inequality of fluxes generates an inward flux of vacancies,
meeting inside and forming the void in the central part of
the system (figure 1(a)). The Frenkel effect is often called
Kirkendall voiding, and this sometimes leads to confusion,
since Kirkendall voiding and Kirkendall shift are in fact
two different effects, and moreover, two competing effects,
competing consequences of the same reason (the difference of
partial diffusivities). To emphasize the competing character of
Frenkel voiding and Kirkendall shift, Geguzin even introduced
special notation for vacancy sinks/sources—K-sinks and F-
sinks. K-sinks are, for example, the kinks at dislocations.
Vacancies can be annihilated or generated at these K-sinks,
locally changing the number of lattice sites and generating
a dislocation gradient and a corresponding lattice shift
(Kirkendall effect). F-sinks are voids. Vacancies can join
these F-sinks without changing the lattice sites number but
increasing the total volume. The functioning of F-sinks leads
to voiding instead of the Kirkendall shift. If one applies a
comparatively low pressure of about 5–10 MPa, which does
not considerably change the jump frequency but is sufficient
to suppress the void nucleation and/or growth, then one will
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Figure 1. Scheme of formation (a) and collapse (b) of hollow nanoparticle. In the first stage (formation) the vacancy flux is directed inside,
opposite to the flux of the faster component B. In the second stage (collapse), when the chemical potential gradient becomes smaller, the
Gibbs–Thomson effect prevails: vacancy flux changes direction and flows from the inner surface (with a higher vacancy concentration) to the
external surface (with a lower vacancy concentration). The vacancy flux generates opposite fluxes of A and B, with the B-flux being larger,
leading to a redistribution—segregation of the faster component B at the inner surface.

suppress the Frenkel effect and observe the ‘pure’ Kirkendall
effect. Indeed, such experiments were made by the Geguzin
group and they demonstrated an increase of the Kirkendall shift
by a factor of approximately two with almost full suppression
of voiding [2].

In hollow nanoshell formation we have the opposite
phenomenon—an almost pure Frenkel effect with a fully or
partially suppressed Kirkendall shift. Most probably, this
happens due to peculiarities of interdiffusion in nanosystems:
(1) there is little place for dislocations in a nanoparticle so
that K-sinks are just lacking; (2) the common Kirkendall
shift in the radial direction leads to tangential deformation
and corresponding stresses in spherical or cylindrical samples,
which turn out to be large in the case of nanosystems, and
suppress the shift.

Just after publication of the first experimental paper on
hollow nanoshell formation [4], Tu and Goesele argued that
such a hollow structure should be unstable since shrinkage of
a hollow shell is energetically favourable (the total surface and
surface energy decreases) [7]. The mechanism of shrinkage
is related to the Gibbs–Thomson effect (the effect of Laplace
pressure on the boundary vacancy concentrations): the vacancy
concentration on the inner boundary of the nanoshell should
be higher than that on the external boundary. This difference
of boundary concentrations leads to an outward vacancy flux
meaning shrinking. In [8] we argued that, contrary to shrinking
of single-component shell, shrinking of a binary compound
shell is also effected by the inverse Kirkendall effect.
Namely, an outward vacancy flux generates opposite fluxes
of two components, which are different due to their different
mobilities (figure 1(b)). In its turn, it leads to segregation of the
faster component near the inner boundary. The corresponding
concentration gradient substantially suppresses the vacancy
flux. Therefore, the shrinkage rate of the compound shell is
controlled by the slow species. Shrinkage of compound shells
was experimentally verified by Nakamura et al [9]. In [10]
we analysed the formation of a hollow compound nanoshell.

We demonstrated that the Gibbs–Thomson effect, leading to
shrinkage of ‘ready’ compound shells, should be important at
the formation stage as well—it sometimes may even suppress
the nanoshell formation.

Both previous papers [9] and [10] treated compound
shells with a very narrow homogeneity range. For this case
the steady-state approximation for both vacancies and main
components worked well. Here we will analyse the formation
and collapse of a hollow shell in a system with full solubility
or, at least, with a broad homogeneity range. In this case one
can expect that formation and collapse should be two stages
of one whole process—at the first stage (when the chemical
driving forces are still large) Kirkendall voiding wins over
the curvature effect, then, after arriving at a sufficiently small
concentration gradient, the curvature driven shrinking should
take its revenge. We will use phenomenological and Monte
Carlo modelling, giving the possibility to observe both stages
(formation and collapse) in one run. In all mentioned models
the peculiarities of diffusion in oxides or sulfides are neglected.
These peculiarities will be treated elsewhere.

2. Phenomenological models

In this section we suggest the phenomenological models for
both steps of the process—formation of a hollow nanoshell
during interdiffusion and shrinking of this newly formed
nanoshell with transformation into a compact particle. The
description of shrinking looks simpler. Therefore we start with
the model of collapse, and then modify this model to describe
the formation stage.

2.1. Shrinking

We consider interdiffusion and vacancy fluxes in the spherical
hollow nanoparticle, consisting of a binary solid solution with a
broad homogeneity range. As was explored in [8], such a shell
should shrink due to the outward vacancy flux generated by the
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difference of vacancy concentrations at the inner and external
boundaries. The vacancy flux should lead to a redistribution
of the main components with the corresponding feedback of
the created concentration gradient on the vacancy flux and on
the corresponding shrinking rate. Contrary to the case of an
almost stoichiometric compound [8], in our case of a solid
solution we cannot take diffusivities and concentrations as
almost constant. Thus, one has to solve the coupled non-linear
problem of vacancy flux, interdiffusion and boundary motion.
The following approximations will be used.
(A1). Tracer diffusivities of both components are proportional
to the local vacancy concentration (fraction of empty sites):

D∗
A(c) = cVKA(c), D∗

B(c) = cV KB(c). (1)

Here the concentration c is the molar fraction of component B.
(A2). The composition dependence of both diffusivities is
taken as an exponential one, which is typical. For simplicity
(just to limit the number of model parameters) the logarithms
of both diffusivities are treated as linear functions of the
concentration.

KA(c) = KA0 exp(αAcB), KB(c) = KB0 exp(αBcB). (2)

(A3). The diffusion fluxes of the main components and of the
vacancies take into account the cross-terms and are written in
the lattice reference frame [2, 11]:

� jA(r) = −D∗
Aϕ
∂cA

∂r
+ cA D∗

A

cV

∂cV

∂r
= +KAϕcV

∂cB

∂r

+ cA KA
∂cV

∂r
, (3A)

� jB(r) = −D∗
Bϕ
∂cB

∂r
+ cB D∗

B

cV

∂cV

∂r
= −KBϕcV

∂cB

∂r

+ cB KB
∂cV

∂r
, (3B)

� jV(r) = (KB − KA)ϕcV
∂cB

∂r
− (cAKA + cB KB)

∂cV

∂r
, (3V)

ϕ is a thermodynamic factor, ϕ = cAcB
kT

∂2g
∂c2

B
, g is a Gibbs

free energy per atom of the solution. In the model of regular
solution (Z—coordination number, EAA, EBB, EAB—pair
interaction energies between atoms of corresponding kinds):

ϕ = 1 + cAcB
2Z

kT

(
EAA + EBB

2
− EAB

)
︸ ︷︷ ︸

−λ

≡ 1 + cAcB(−λ).

(4)
Here Manning’s corrections due to the effect of a vacancy

wind are neglected. Our preliminary estimates have shown
that these corrections, at least for a disordered solution, do
not change the general picture. In this approximation cA KA +
cB KB = DV (neglecting the correlation factor). The factor λ is
proportional to the mixing enthalpy and is negative if solution
formation is energetically favourable.
(A4). There is no Kirkendall shift inside the nanoshell.
First, as was mentioned in section 1, there is little place
for vacancy sinks/sources in a nano-volume. Second, if all

atoms of the lattice try to move along the radial direction, this
shift would immediately generate tangential deformation and
corresponding stresses. Boundaries of the shell do move but
not due to lattice shift—just some atoms leave one boundary
and attach to another boundary.

Therefore we can write down the continuity equations
(analogue of Fick’s second law) in the lattice reference frame:

∂cV

∂ t
= − 1

r 2

∂

∂r
(r 2� jV)+ 0, (5V)

∂cB

∂ t
= − 1

r 2

∂

∂r
(r 2� jB). (5B)

The zero in equation (5V) was put just there to remind us
about the absence or ineffectiveness of vacancy sources and
sinks inside the shell.
Boundary conditions. Though cV(r, t) is a nonequilibrium
vacancy distribution, its values at the boundaries are
in equilibrium and fixed by the Gibbs–Thomson relation
(figure 1(b)):

cV(Ri) = ceq
V exp

(
+2γ�

kT

1

Ri

)
,

cV(Re) = ceq
V exp

(
−2γ�

kT

1

Re

)
.

(6)

The flux balance equations at the moving inner and
external boundaries depend on the conditions of the
experiment. Here we will treat the case when evaporation of
atoms from the nanoshell is impossible. So, all fluxes outside
the shell and inside the central void are absent. A vacancy flux
from the inner boundary to the external boundary generates
the movement of both these boundaries according to trivial
relations:

dRi

dt
= −� jV(Ri),

dRe

dt
= −� jV(Re). (7)

Boundary conditions (6) and (7) would be enough for
shrinking of a single-component shell. In our case of a binary
solution we should have additional conditions. Boundary
concentrations of the main components are not fixed (we do
not have an analogue of equation (6) for A or B), but the
conservation laws are valid, of course, implying the conditions
on fluxes. The sum of three fluxes is zero in the lattice
reference frame ( jV + jA + jB = 0). Thus, two fluxes are
independent. It means that one should write down the flux
balance equations at both moving boundaries for one of the
main components, taking into account that fluxes outside the
shell equal zero:

(cB(Ri)− 0)
dRi

dt
= � jB(Ri)− 0,

(cB(Re)− 0)
dRe

dt
= � jB(Re)− 0.

(8)

Combining equations (7) and (8), one gets:

− cB(Ri)� jV = � jB(Ri), −cB(Re)� jV = � jB(Re).

(9)
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Below we will use common steady-state approximation
for fast diffusing vacancies, which reflects the hierarchy of
characteristic times—the vacancy subsystem is fast enough to
adapt to the slow redistribution of the main components and to
movement of the boundaries (except at the very last stage of
collapse, which is very fast):

∂CV

∂ t
≈ 0 ⇒ r 2� jV(r) = �JV

4π
= const at r. (10)

(JV is the total flux of vacancies which has to be determined
from boundary conditions).

It is convenient now to make the following transformation
of variables:

t ′ = t; ξ = 1/r − 1/Re

1/Ri − 1/Re
, 0 < ξ < 1, (11)

∂

∂ t
= ∂

∂ t ′ +
(
ξ

R2
i

dRi

dt
+ (1 − ξ)

R2
e

dRe

dt

)
Re Ri

Re − Ri

∂

∂ξ
,

∂

∂r
= − [Ri + (Re − Ri)ξ ]2

(Re − Ri)Re Ri

∂

∂ξ
.

(12)

Using equations (3V), (11), (12) one obtains:

�JV/4π = Re Ri

Re − Ri

(
−(KB − KA)ϕcV

∂cB

∂ξ

+ (cA KA + cB KB)
∂cV

∂ξ

)
, or

∂cV

∂ξ
= (KB − KA)ϕ

cAKA + cB KB
cV
∂cB

∂ξ
+ (�JV/4π)

cAKA + cB KB

(Re − Ri)

Re Ri
.

(13)

If cB(ξ) profile is known, then equation (13) has a standard
form:

dcV(ξ)

dξ
= f (ξ)cV + a

ψ(ξ)
(14)

with
ψ(ξ) = cA(ξ)KA(ξ)+ cB(ξ)KB(ξ),

f (ξ) = (KB − KA) ϕ

cAKA + cB KB

∂cB

∂ξ
,

(15)

and can be solved with respect to the unknown function cV(ξ):

cV(ξ) = exp

(∫ ξ

0
f (ξ ′) dξ ′

)(
ceq

V
exp

(
− 2γ�

kT Re

)

+ Re − Ri

Re Ri

�JV

4π

∫ ξ

0

dξ ′

ψ(ξ ′)
exp

(
−

∫ ξ ′

0
f (ξ ′′) dξ ′′

))
.

(16)

Combining expression (16) with the Gibbs–Thomson
relations (6) for boundary vacancy concentrations, we obtain
an expression for the total vacancy flux in terms of the
unknown B-concentration profile:

�JV

4π
= Re Ri

Re − Ri
ceq

V

×
exp

(
2γ�
kT Ri

)
exp(− ∫ 1

0 f (ξ) dξ)− exp
(
− 2γ�

kT Re

)
∫ 1

0 exp
(
− ∫ ξ

0 f (ξ ′) dξ ′
)

dξ
ψ(ξ)

. (17)

Substituting equation (13) into equation (3B), one can
express the flux of one of the main components in terms of

its gradient and of total vacancy flux (which is constant within
the layer):

r 2� jB(r) = −KBϕcVr 2 ∂cB

∂r
+ cB KBr 2 ∂cV

∂r

= Re Ri

(Re − Ri)

(
KBϕcV

∂cB

∂ξ
− cB KB

∂cV

∂ξ

)

= Re Ri

(Re − Ri)

KA KBϕ

cAKA + cB KB
cV
∂cB

∂ξ
− cB KB

cAKA + cB KB

�JV

4π
.

(18)

Thus, the steady-state approximation for vacancies,
together with the Gibbs–Thomson boundary conditions,
reduces the system of two differential equations (4)
and (5V), (5B) to only one, however, integro-differential
equation:

∂cB

∂ t ′ = ξ
dηi

dt + (1 − ξ)
dηe

dt

ηi − ηe

∂cB

∂ξ

+ (ηe + (ηi − ηe)ξ )
4

(ηi − ηe)2

∂

∂ξ

(
KAKBϕ(ξ)

cAKA + cB KB
cV(ξ)

∂cB

∂ξ

− cB KB

cA KA + cB KB
(ηi − ηe)

�JV

4π

)
(19)

with ηi = 1/Ri, ηe = 1/Re.
The total vacancy flux in equation (19) is determined by

equation (17). The conditions for the B-profile at the internal
(ξ = 1) and external (ξ = 0) boundaries can be found from
equation (9) with using equations (17) and (18):

∂cB

∂ξ

∣∣∣∣
ξ=1

= − Re − Ri

Re Ri

�JV

4π

[
cAcB(KB − KA)

KA KBϕ

]
ξ=1

× exp

(
− 2γ�

kT Ri

)/
ceq

V , (20)

∂cB

∂ξ

∣∣∣∣
ξ=0

= − Re − Ri

Re Ri

�JV

4π

[
cAcB(KB − KA)

KA KBϕ

]
ξ=0

× exp

(
+ 2γ�

kT Re

)/
ceq

V . (21)

The boundary problem (19)–(21) is solved by the explicit
finite-difference scheme, with the B-profile at a previous
time step used for the calculation of the total vacancy flux
according to equation (17) and substituted into equation (19)
for calculating the profile at the next time step. After this
the newly calculated B-profile is used to calculate the new
vacancy profile according to equation (16). The velocities of
the boundaries, and the new internal and external radii are
calculated according to equation (7), also from the newly found
value of the total vacancy flux.

2.2. Formation of a hollow nanoshell from the core–shell
structure without the influence of the atmosphere (ambient)

To describe the formation of a nanoshell, we do not need
to change the model equations—we only change the initial
conditions. Namely, consider a sphere of pure B of radius RBA

surrounded by a shell of pure A (figure 1(a)). To escape solving
the nucleation problem, let us assume that the initial pure
sphere A already contains a small void in the centre. Of course,
for too big an initial core this assumption seems unreasonable
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since the first voids should nucleate in the vicinity of the initial
contact between A and B. Yet, for nanoparticles it is natural
that the initial nanovoids coalesce very fast into a single central
void. Thus, in our model the initial B-profile is:

t ′ = 0, cB(ξ) =
{

1, 0 < ξ < ξBA

0, ξBA < ξ < 1,

ξBA ≡ 1/RBA − 1/Re0

1/Ri0 − 1/Re0
.

(22)

Evidently, the curvature effect, determining the kinetics
of collapse at the shrinking stage, cannot be neglected at the
formation stage as well. Formation of a nanoshell is a result of
competition between the Frenkel effect due to chemical forces
(and the difference of diffusivities) and the Gibbs–Thomson
effect, as discussed in [10]. The smaller the radius, the larger
should be the role of curvature driven effects. Thus, one can
expect that, for an initial void radius smaller than some critical
value, formation will be impossible. This critical radius can be
found from the expression (17) for vacancy flux. Namely, an
initial pore in the B/A core shell structure will shrink from the
very beginning if the sign of the vacancy flux is positive. For
this it is necessary that

exp

(
2γ�

kT Ri

)
exp

(
−

∫ 1

0
f (ξ) dξ

)
> exp

(
− 2γ�

kT Re

)
,

(23)
which means:

∫ cB(Ri)

cB(Re)

(KB − KA) (1 − ñAcBλ)

cA KA + cB KB
dcB < L

(
1

Ri
+ 1

Re

)
,

L = 2γ�

kT
.

(24)
At the very beginning cB(Re) = 0, cB(Ri) = 1. Thus,

formation of a hollow nanoshell from a core–shell structure is
forbidden if

1

Ri
+ 1

Re
>

1

L

∫ 1

0

(κeαx − 1)(1 − λx(1 − x))

1 + x(κeαx − 1)
dx . (25)

Here κ = KB0
KA0

, α = αB − αA, x = cB.
This criterion is not rigorous since it was obtained under

two major assumptions: (a) a steady-state approximation for
vacancies and (b) the assumption of a single central void
preexisting in the centre and serving as the sink for all extra
vacancies coming into the B-rich core. In reality, at the very
beginning the largest supersaturation with vacancies should
appear just under the initial contact surface B/A, as will be
seen in figure 5 (vacancy profile at the initial formation stage).
It may lead to several tiny voids forming under the B/A
perimeter, as we will see later in the Monte Carlo simulation
and as was observed in experiments at low temperatures [6].

3. Results of phenomenological model

In figure 2 one can see that the time law of shrinking
correlates with the time dependence of the segregation

Figure 2. Time dependences of void radius (a) and segregation
magnitude (b) during shrinking at various ratios of diffusivities
κ = 1, 2, 4, 8, 16, 32 (actually, preexponential
factors)—phenomenological model. Parameters: ceq

V
= 10−4,

cinit
B = 0.5, Rinit

i = a, Rinit
e = 17a, L = 10−9 m, κ = 10, αA = −6,

αB = −2, λ = 0.

magnitude measured as the difference between the B-species
concentration at the external and internal nanoshell boundaries
(a—lattice parameter, used in Monte Carlo simulation,
section 4). Also, one can notice a peculiarity in the time
dependence just after the initial stage. The shrinking rate
slows down after a rather fast initial segregation—the Ri(t)
dependence has an inflection point. Later we will see
that this peculiarity is not general, and disappears in the
cross-over regime when the nanoshell collapse follows the
nanoshell formation at the same temperature. We believe
that the reason is related to different initial conditions. The
results shown in figure 2 are obtained for a rather artificial
initial condition, when the initial concentration is taken equal
everywhere. So, some short period of adjustment follows.
If we take a just grown nanoshell, it has an inhomogeneous
concentration distribution from the very beginning (because of
the competition of Kirkendall, inverse Kirkendall and Gibbs–
Thomson effects proceeds at the formation stage as well). So,
one can expect a constant sign of the second time derivative in
this case (see figure 5).

The time of full collapse depends almost linearly on the
ratio κ of preexponential factors in equation (2): tcollapse =
mκ + b. The magnitudes of coefficients m and b in this linear
approximation change at small mixing enthalpies and reach
asymptotic values at large mixing enthalpies (figure 3).
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Figure 3. Dependences of the parameters m and b of the linear
approximation tcollapse = mκ + b (κ = 1, 2, 4, 8, 16, 32) for the
collapse time tcollapse on non-dimensional mixing
enthalpy—phenomenological model. Parameters: ceq

V
= 10−4,

cinit
B = 0.5, Rinit

i = a, Rinit
e = 17a, L = 10−9 m,

λ = 0, 6, 12, 25, 50, 100 and (a) αA = −6, αB = −2; (b) αA = −3,
αB = −2; (c) αA = 2, αB = 3.

Such a linear dependence was predicted by us in the
case of compound nanoshells with a very narrow homogeneity
range [8]:

tcollapse ≈ kT

12γ�
r 3

f

CA D∗
B + CB D∗

A

D∗
A D∗

B

= kT

12γ�

r 3
f

D∗
B

×
(
(1 − CB)

D∗
B

D∗
A

+ CB

)
(26)

(rf is a final particle radius after collapse).
In our case D∗

B
D∗

A
= κ exp((αB − αA)cB). Thus, in the

case of a narrow compound phase (meaning a large mixing

Table 1. Asymptotic (at large λ) ratio of linear fit coefficients for the
dependence of collapse time on the diffusivity ratio.

αA αB

m/b, analytical prediction
(equation (27))

m/b, phenomenological
model

−6 −2 7.07 7.39
−3 −2 1.54 1.65

2 3 1.49 1.65

enthalpy) one can expect that

m

b
= 1 − cB

cB
exp ((αB − αA)cB) . (27)

One can see that the asymptotic values of this ratio in
the present case of a solid solution are indeed close to the
mentioned analytical prediction (table 1).

In figure 4 one can see that the validity of the steady-
state approximation for the main components improves with
increasing absolute value of mixing enthalpy. To demonstrate
this, we compare the value of reduced shrinking rate

RSR = dRi

dt
R2

i

1/Ri − 1/Re

exp
(

2γ�
kT Ri

)
− exp

(
− 2γ�

kT Re

) , (28)

obtained in our present model, and the value obtained in the
steady-state approximation for compounds in [8]:

RSR0 = D∗
A D∗

B

(cA D∗
B + cB D∗

A)
, (29)

(with tracer diffusivities calculated for initial nanoshell
composition before shrinking).

One can see that the larger the absolute value of mixing
enthalpy (the larger are the chemical forces) the better the
steady-state approximation works. This is an answer to the
problem stated by the group of Murch [12].

In figure 5 we demonstrate (for the first time, as
far as we know) formation and shrinkage in one run.
During the formation stage the chemical forces in a sharply
inhomogeneous system are stronger than the curvature driven
vacancy gradient. After formation of a partially homogeneous
hollow nanoshell, chemical forces become weaker, and the
curvature driven Gibbs–Thomson effect wins, leading to a
collapse due to the outward vacancy flux.

Profiles of B species in figure 5 demonstrate that the full
homogenization is not reached during nanoshell formation—
even at maximal void radius the concentration gradient
is not zero, and later it grows back due to the inverse
Kirkendall effect. The vacancy profile shows the formation
of supersaturation just under the initial B/A interface at the
initial stage. Later this nonmonotonic profile transforms into
a monotonic one.

4. Monte Carlo simulation of the vacancy subsystem
evolution in the structure ‘core–shell’

Alternatively to the offered phenomenological models, we
developed a 3D Monte Carlo model of nanoshell formation and
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Figure 4. Time dependence of reduced shrinking rate defined by equation (28) at various values of mixing enthalpy λ = 0, 6, 25, 100
calculated at ceq

V
= 10−4, cinit

B = 0.5, Rinit
i = a, Rinit

e = 17a, L = 10−9 m and (a) κ = 2, αA = −6, αB = −2; (b) κ = 2, αA = −3, αB = −2;
(c) κ = 2, αA = 2, αB = 3; (d) κ = 16, αA = −6, αB = −2; (e) κ = 16, αA = −3, αB = −2; (f) κ = 16, αA = 2, αB = 3.

collapse for the fcc-structure (lattice parameter a) of binary
alloy with vacancies. To be sure that the proposed model is
valid and the chosen parameters are reasonable, we should
check at first, if a hollow nanoshell is indeed formed from the
initial core–shell structure.

The difference of diffusivities of A and B species (even
in the case of an ideal alloy with zero mixing enthalpy) is
provided by the probability of choosing the atom of a given
kind in the Metropolis algorithm, determined by the ratio of
frequencies K = νB/νA (νA � νB). Actually, the difference of
mobilities is stipulated not only by different frequencies K , but
also by thermodynamics and the structures of the sublattices:
in the ordered phase A1B3 the component B will have a higher
mobility even in the case of equal frequencies.

Temperature is, typically for MC simulations, regulated
by varying the non-dimensional ratio ε of average interaction
energy E and kT (larger ε means lower temperature):

ε = c2
AεAA + c2

BεBB + 2cAcBεAB. (30)

In the following we model the nonideal (with tendency to
ordering) as well as ideal solutions, combining the sets of non-
dimensional pair interaction energies or/and concentrations to
satisfy equation (30) at fixed ε (fixed temperature).

In section 4.1 we simulate the formation of a nanoshell for
the case of a nonideal solution. In section 4.2 we simulate the
cross-over from formation to collapse, as well for a nonideal
solution but for another average concentration, to obtain the
formation and collapse in one run in a reasonable computation

7
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Figure 5. Time evolution of initial tiny void radius—first a fast formation of the hollow nanoshell and then its collapse (slow and then faster
and faster). Insets (a)–(c) show the concentration profiles of the faster component at formation, the cross-over and the collapse stages
respectively. Insets (d)–(f) show the vacancy concentration profiles at the same stages. One can see that the transition from formation to
collapse does not mean the full homogenization of the shell. Parameters: ceq

V
= 10−4, cinit

B = 0.075, Rinit
i = 1.4a, Rinit

BA = 7a, Rinit
e = 17a,

L = 0.75 × 10−9 m, κ = 10, λ = 0, αA = −4.5, αB = −2, dt = 10−4 s.

time. In section 4.3 we mainly investigate the segregation
caused by the (kinetic reasons) inverse Kirkendall effect—for
this reason in this subsection we treat an ideal solution.

4.1. Formation of a nanoshell in the MC-simulation

To investigate the kinetics of nanoshell formation a nanoparti-
cle of pure B component (radius RBA = 15.7a) was initially
enveloped by a pure A component (external radius Re =
17a) (total number of atoms is 82 421)—the chosen ratio
of internal RBA and external Re concentric radii provides
the necessary volume fractions in the eventual A1B3 phase
(cB = 0.75). According to equation (30) the pair energies
in this case are chosen as εAA = εBB = 0.7εAB: at low
temperature εL

AA = εL
BB = −1.32, εL

AB = −1.89 with
average energy εL = −1.535 [13]; at high temperature
εH

AA = εH
BB = −0.86, εH

AB = −1.23 with average energy
εH = −0.98. As a result of the simulation the widening
of the A/B diffusion zone is observed and small voids start
forming at the pure B/alloy interface. In the process of
the computer experiment the voids expand, leaving between
themselves ‘bridges’ of pure B. At high temperature we
observed the subsequent coalescence of voids into a single
spherical void in the centre of the nanoparticle (figure 6, movie
1, ‘Void Formation’, left—cross-section view of nanoparticle,
right—transmission view of empty sites, histogram in right
up corner is a radial distribution of empty sites, available at
stacks.iop.org/JPhysCM/21/415303). These simulation results
correlate with the experiments on the formation of cobalt
selenides and sulfides [4, 6, 14].

4.2. Cross-over from formation to collapse

In the above mentioned simulations the process practically
stopped after formation of the hollow nanoshell. It seems
quite clear since formation is driven by chemical forces and
collapse—by capillary ones. The latter are usually significantly
less than chemical forces. Therefore, shrinking of a nanovoid
is typically a much slower process and can be observed at
temperatures higher than for the process of formation. To
describe the formation and collapse in one simulation, one
needs higher temperatures. We took εH

AA, εH
BB, εH

AB and the
initial interrelation of the components’ radii RBA = 7a, Re =
17a, corresponding to an average concentration c̄B = 0.075
(5745 B atoms, 76 676 A atoms) and to ε = 0.9. The
process of void formation proceeded very quickly (during
1238 MCS). At that point, the void formed in the centre
of the nanoparticle and appeared to be unstable: just after
having reached the maximal size (3314 sites) it collapsed
(figure 7, movie 2, ‘Crossover from formation to collapse’,
available at stacks.iop.org/JPhysCM/21/415303). To correlate
the simulation results with the phenomenological model, we
recalculated the number of empty sites into an effective void
radius Ri.

4.3. Shrinking and segregation kinetics in the MC-simulation

Now we come back to synergy of curvature driven effects and
the inverse Kirkendall effect at the shrinking stage. The above
described MC-model was used to simulate the collapse of the
nanoshell with Ri = 7a, Re = 17a (total number of atoms is
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Figure 6. Void formation in a nanoparticle: (a) results of the
MC-simulation with c̄B = 0.75, K = 10 at high temperature (εH) at
time points of 167, 1000, 2000 and 10 000 MCS (sample
cross-section, light dots—B, dark dots—A), the maximal size of the
void attained at 8400 MCS; (b) evolution of CoSe hollow
nanocrystals with time by injection of a suspension of selenium in
odichlorobenzene into a cobalt nanocrystal solution at 455 K: 10 s, 1,
2 and 30 min [4].

76 676 and the number of empty sites in the void is 5745) for
an ideal alloy at c̄B = 0.75 and K = 10. At high temperature
(εH) after 7000 MCS the void has shrunk by 9.58% (figure 8).

To investigate the segregation effects we have used
nanoshells of an ideal alloy with Ri = 4a, Re = 8a at low
temperature (εL) with different ratios of frequencies K (10,
50, 100) and concentrations cB (0.25, 0.50, 0.75, 1.00). We
may conclude that the larger is K and/or cB, the more intensive
are the segregations of the more mobile component near the
internal surface (figure 9) and the slower is the process of
nanoshell collapse (figure 10).

5. Conclusion

Formation of hollow nanoshells and their collapse are
presented as the two stages of one process with the cross-
over between regimes being determined by competition of

Figure 7. Nanoshell formation and collapse in one run—atomistic
simulation and phenomenology. MC (solid line) and
phenomenological (dashed line) plots are superimposed with
respective time rescaling: 1 MCS = 62 ms. MC-modelling at high
temperature (εH

AA, εH
BB, εH

AB), K = 10 and a small fraction of a more
mobile B component (light dots, c̄B = 0.075): (a) formation stage;
(b) cross-over. Phenomenological plot calculated at ceq

V = 10−4,
cinit

B = 0.075, Rinit
i = 1.4a, Rinit

BA = 7a, Rinit
e = 17a,

L = 0.75 × 10−9 m, κ = 10, λ = 0, αA = −4.5, αB = −2,
dt = 10−4 s.

Figure 8. MC-time-dependence of inner radius (a) and of the
concentration near the moving boundaries (b) at the initial stage of
the shrinkage of the A1B3 nanoshell (Ri = 7a, Re = 17a, dr ≈ 1.7a,
K = 10, εH): segregation of B species near the internal surface leads
to slowing down of the nanoshell shrinkage.

the Kirkendall driven Frenkel effect, the curvature driven
Gibbs–Thomson effect and of the inverse Kirkendall effect.
Such a unified approach appears to be reasonable both in the
phenomenologic analysis and in Monte Carlo simulation. The
presented analysis is applied (in this paper) only to the case of
solid solutions. One can formulate the following main features
and predictions of the mentioned approach.

(1) Formation of the hollow shell is driven by the inward
vacancy flux which contains two competing inputs: (a—
assisting formation) chemical driving force which is
proportional to the main component’s gradient and the
difference of partial diffusivities (if the faster component
is situated inside), (b—suppressing formation) vacancy
gradient created by the difference of equilibrium vacancy
concentrations at the inner and external boundaries

9
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Figure 9. Radial concentration profile for a nanoparticle just after collapse: (a) at different ratios of the frequencies of components (average
concentration c̄B = 0.25); (b) at different average concentrations (at K = 100).

Figure 10. Collapse rate influenced by (a) ratio of frequencies and (b) volume fractions of components.

(Gibbs–Thomson effect) after formation of at least the first
void inside. This void should appear due to the first driving
force (a superposition of the chemical potential gradient
and the difference of diffusivities).

(2) Conventionally, the critical void size is determined only
by vacancy supersaturation and temperature. In our
case, the concept of critical size should be reconsidered.
Void behaviour, besides local vacancy concentration, is
also determined by the gradients of vacancies and main
component, so that a thermodynamically stable void might
be kinetically unstable. An approximate criterion of
central void growth is given by equation (25).

(3) In the process of inner void growth, the initial reserves
of the chemical driving force (concentration and chemical
potential gradients) run out, so that at some moment (at
some void radius) the chemical driving force becomes less
than the capillary forces (and the corresponding vacancy
drop between the inner and external boundaries). Thus,
one has a cross-over from formation to shrinking.

(4) In the general case, reaching the maximum void radius
(end of formation and cross-over to shrinking) does not
mean full homogenization, so that shrinking starts at
once from an inhomogeneous shell. Therefore, separate
treating of shrinking starting from a homogeneous initial
hollow nanoshell is somewhat artificial and may lead

to simulation artefacts, such as retardation, after some
period of segregation. Of course, if the formation and
shrinking proceed at different temperatures, some initial
‘adjustment’ of concentration profile at the beginning of
shrinking might indeed have taken place.

(5) The formation stage starts from vacancy supersaturation
just under the interface, and the formation of multiple
tiny nanovoids in this region, with bridges in between
providing mass-transfer to the remaining metallic core.
(This feature was established only by Monte Carlo sim-
ulation, since our phenomenological model is spherically
symmetric so far, and cannot describe the multiple voids
and bridges.) This feature fully corresponds to the
experimental data.

(6) The shrinking stage is characterized by the inverse
Kirkendall effect: an outward vacancy flux generates the
segregation of a faster component near the inner surface,
the corresponding concentration gradient decreases the
vacancy flux and, respectively, the shrinking rate. Thus,
at the shrinking stage one also has the competition of
capillary forces, assisting shrinking, and chemical forces,
opposing shrinking. The peculiarity here is that the
chemical force is not ‘external’, it is created by vacancy
flux, generated by capillary forces. This result for a
solid solution was obtained both by phenomenological
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modelling and MC-simulation and coincides with results
obtained by us earlier [8] for almost stoichiometric
compounds with a narrow homogeneity range. The
coincidence becomes almost perfect for the case of large
absolute values of mixing enthalpy in a solid solution.

(7) For the case of large mixing enthalpies the steady-state
approximation for the main components (not only for
the vacancies) appears to be valid. For small and zero
mixing enthalpies (an ideal solution) the steady-state
approximation for the main components works worse.

(8) In this work we did not consider the reaction between
solid nanoparticles and gases, the respective models will
be presented elsewhere.
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