
with the theoretical curve. Even though there was a small
deviation, the experimental data showed fairly good agree-
ment with the FDR model. The equation for the theoretical
normalized curve of size distribution shown in Fig. 6a is
given as [4]

gðuÞ ¼ c
u

ð2� uÞ4
exp � 4

2� u

� �

where u is the scaled particle size, defined as u = r/hri, and
g(u) is the probability density.

c ¼
Z 2

0

x

ð2� xÞ4
exp � 4

2� x

� �
dx

 !�1

¼ 0:0169

so that g(u) is normalized toZ 2

0

gðuÞdu ¼ 1

The theoretical value of the standard deviation is

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ 2

0

ðu� 1Þ2gðuÞdu

s
¼ 0:331

The theoretical value of skewness is

1

r3

Z 2

0

ðu� 1Þ3gðuÞdu ¼ �0:433

and the kurtosis is

1

r4

Z 2

0

ðu� 1Þ4gðuÞdu� 3 ¼ �0:403

Table 2 presents values of standard deviation, skewness and
kurtosis, measured after different reflow times. Their average
values were 0.423, �0.133 and �0.670, respectively.

Because cross-sectional SEM images were used to mea-
sure the height of the scallops, the number of scallops mea-
sured is much less than in the case of the radius distribution
where the radius of scallops was measured from top-view
images. Therefore, the height measurement data shown
here is not statistically as reliable as the radius measure-
ment, although the growth exponent of height vs time
was also close to 1/3. The aspect ratio between height
and radius remained almost constant. The average value
of aspect ratio was 1.05.

4. Discussion

On the FDR model, the major differences from the
LSW model are the constant surface area of growth
and the existence of channels between scallops. The
width of channel has not been measured directly, so
the calculation based on experimental measurement is
very important to the model. The constant k in Eq. (2)
is composed of several thermodynamic parameters. To
make a rough estimation of the channel width, one can
take Ci � 6/11, n/ni � 1, D � 10�5 cm2 s�1 and Cb � Ce

� 0.001. Cb � Ce was estimated by numerical thermody-
namic calculation [4]. As k = 2.10 � 10�14 cm3 s�1, the
channel width is calculated to be d = 2.54 nm, which
means the channel width is in the nanometer scale. To
validate the calculated channel width roughly, one can
consider the upper and lower bounds of the channel
width. The lower bound of the channel width is
0.5 nm, which is a typical grain boundary width in the
solid state. If one takes a diffusivity of 10�8 cm2 s�1,
which is on the order of the diffusivity of all fcc metals
at their melting point, it should be the highest grain
boundary diffusivity in the solid state, and the calculated
channel width will represent an upper bound. Fig. 7 is a
plot of diffusivity vs channel width. If one assumes a dif-
fusivity of 10�8 cm2 s�1, the channel width is 2.54 lm.
Obviously, this is an unreasonably large value because
this value is comparable with the average diameter of
the scallops. If one takes the channel width as 0.5 nm,
the diffusivity is 5 � 10�5 cm2 s�1. Again, this is a high
diffusivity for liquid, not for grain boundary. However,
the calculated channel width needs to be confirmed
experimentally. Wetting a molten SnPb solder on a bulk
Cu6Sn5 surface will provide deep penetration of the

Fig. 4. Data plot of average radius vs time and height vs time Cu6Sn5 in
reaction between 55Sn45Pb and copper at 200 �C.

Fig. 5. Cross-sectional SEM image of Cu6Sn5 formed by reaction between
55Sn45Pb solder and copper at 200 �C for 30 s.
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solder into the grain boundaries of Cu6Sn5, and perhaps
the exact width of the channel can be determined by
transmission electron microscopy.

Fig. 6. Normalized PSD Cu6Sn5 scallops of (a) 30 s, (b) 1 min, (c) 2 min, (d) 4 min and (e) 8 min reflow. In (a), theoretical curves from LSW theory and
FDR theory are shown for comparison.

Table 2
Statistical parameters of PSD of Cu6Sn5 in reaction between 55Sn45Pb
and copper at 200 �C

Time
(s)

Average radius
hri (lm)

Standard deviation
r, of r/hri

Skewness
of r/hri

Kurtosis
of r/hri

30 0.753 0.408 �0.126 �0.642
30 0.894 0.425 �0.096 �0.654
60 0.913 0.441 0.113 �0.575
60 1.025 0.415 �0.183 �0.628
60 0.953 0.406 �0.143 �0.662

120 1.164 0.428 �0.082 �0.560
120 1.169 0.410 �0.142 �0.572
120 1.253 0.434 �0.033 �0.743
120 1.152 0.399 �0.215 �0.618
240 1.566 0.455 �0.141 �0.796
240 1.760 0.433 �0.074 �0.712
240 1.522 0.417 �0.200 �0.667
240 1.704 0.419 �0.222 �0.718
480 1.933 0.428 �0.233 �0.740
480 1.908 0.417 �0.101 �0.630
480 1.910 0.418 �0.253 �0.735
480 2.062 0.434 �0.122 �0.741

Fig. 7. Calculated relationship between diffusivity (D) of Cu through
channel and channel width (d).

1080 J.O. Suh et al. / Acta Materialia 56 (2008) 1075–1083



As the FDR assumes hemispherical scallops, it is of inter-
est to see whether there is any change in ripening behavior
when the scallop morphology deviates greatly from the
hemispherical shape. Ghosh [10] investigated Ni3Sn4 forma-
tion by the reaction between various eutectic solders and Cu/
Ni/Pd metallization. Ni3Sn4 scallops had an extremely fac-
eted morphology, and their size distribution deviated greatly
from the FDR theoretical curve. But their growth rate also
followed t1/3. Görlich et al. [11] investigated ripening of
Cu6Sn5 when pure Sn reacted with Cu. The scallops had a
faceted morphology, even though edges of scallops were
more or less smoothened due to excessive chemical etching.
The agreement with the theoretical model was not as good
as in the current case of the round scallops, but was still in
a relatively good agreement. The growth exponent was
0.34 for the scallop diameter and 0.40 for the height. This
deviation from the theory can be examined in terms of geo-
metric height-to-radius aspect ratio (height/(width/2)). In
Görlich’s work, average height-to-radius aspect ratio of scal-
lops was �0.71, while the average aspect ratio is 1.05 in the
current study.

In the very early stage of the wetting reaction, nucle-
ation of the scallops will have a greater effect on the size
distribution. Thus, the PSD of short reaction time was
expected to be less ideal. However, the size distribution
of 30 s of reaction already showed very good agreement
with the FDR theory. In addition, the standard deviations
of PSD showed very little variation with reaction time
(�0.4). This means that 30 s is enough time for ripening
to be dominant over nucleation and growth and to achieve
a stationary asymptotic state of distribution, which is sta-
ble in the reduced size scale r/hri.

5. Conclusion

In the wetting reaction between molten SnPb solder of
varying composition and copper, the growth and ripening
of Cu6Sn5 scallops obeys the FDR model of non-conserva-
tive ripening, assuming a constant interfacial area. The
measured size distribution of the scallops is in good agree-
ment with the FDR model, especially when the morphol-
ogy of the scallops is close to hemispherical, as in the
wetting reaction between eutectic SnPb and Cu. Minor
deviations between the model and the experimental results
can be reduced by taking noise into consideration, as is
demonstrated in Appendix. The improved FDR model
showed even better agreement with the experimental data.
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Appendix

The small difference between the measured statistical
parameters and the theoretical values indicates that there

is room for improvement of the FDR model. (This prob-
lem is also typical for PSD predicted by LSW theory for
ripening in closed systems [12].) The origin of the deviation
is considered to be from deviation of the local concentra-
tion of solute due to the large volume fraction of the scal-
lops. The FDR theory was developed under mean field
approximation, similar to the LSW theory. But if the new
phase (precipitates or scallops) has a comparatively large
volume fraction (f > 0.02) in standard Ostwald ripening,
the deviations from the mean field caused by noise cannot
be neglected [13]. The main origin of the noise is the devi-
ation of local concentration (or chemical potential) from
the mean field value in the parent phase. When a precipi-
tate has a large volume fraction of closest neighbors, the
closest neighbors will screen its diffusive interaction from
more distant precipitates. Another reason for noise is the
possible local fluctuations of diffusivity and surface ten-
sion. In the FDR theory, the volume fraction of scallops
in the reaction zone is very large. The exact value of the
volume fraction is difficult to tell. This is because the sys-
tem is open near the scallops, and the scallops grow in
the molten solder with a sharp concentration gradient in
the scallop region. The copper atoms at the bottom of
the scallops can be distributed only between the nearest
neighboring scallops. In contrast, the copper atoms in the
upper part of the solder bump can easily find their way
to any scallop. It is assumed that the incoming Cu atoms
have time and possibility to migrate all over the solder
before attaching to some of the scallops. The volume frac-
tion of scallops with average height h in the hemispherical
solder bump with radius R can be roughly estimated as

f � pR2h
2
3
pR3
� 3

2

h
R

ðA1Þ

Even though this is a very rough estimation, the order of
magnitude is correct. Take h � 1.5 lm, which is about
the average radius of scallops after 4 min reflow, and
R � 300 lm, which is about the radius of the solder bead.
Then, one has f � 0.0075.

The noise level, the ratio of the average squared devia-
tion of supersaturation in the vicinity of an arbitrary pre-
cipitate from the mean field value, is estimated as the
equation below [13]:

m � 1

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðdCÞ2i

q
ðA2Þ

where

hðdCÞ2i ¼ hðD� DÞ2i ðA3Þ
where D is supersaturation in the vicinity of an arbitrary
precipitate, and D is the mean field value.

In a previous study [13], it was demonstrated that the
noise level is approximately

m � f 1=4 � s ðA4Þ
where s is the standard deviation of PSD, which is equal to
0.215 in LSW and 0.33 in FDR. If one takes s � 0.33 and

J.O. Suh et al. / Acta Materialia 56 (2008) 1075–1083 1081



f � 0.0075 (h � 1.5 and R � 300 lm), m � 0.1. This can be
considered as almost the lowest estimate of noise, because
the short-range order effects and the possible scatter of
channel widths were not considered. In the FDR model,
the growth rate of the scallops is given as [4]

drl

dt
¼ L

nCi
l� l1 �

b
rl

� �
ðA5Þ

where Ci is the quasi-equilibrium concentration of Cu in
the vicinity of Cu6Sn5, l is the average chemical potential
of Cu in the reaction zone, l1 is the equilibrium chemical
potential for the flat interface, b = 2cX (X is the molar vol-
ume, c is the surface tension between the IMC and the li-
quid solder). The parameter L is similar to the Onsager
coefficient and is determined self-consistently from the
two constrains: constant surface and mass conservation [4].

Translating the noise of concentration into the noise of
chemical potentials and adding the noise term, Eq. (A5)
becomes

drl

dt
¼ L

niCi
ðl� l1Þ � ð1þ elÞ �

b
rl

� �
ðA6Þ

where el is the relative noise of the chemical potential and
the corresponding copper concentration, in the vicinity of
the lth scallop. The el is taken to be distributed according
to Gaussian distribution with standard deviation, deter-
mined by the noise level m.

As the total surface area of the particles is assumed to be
constant in the FDR theory, one must substitute Eq. (A6)
into the constraint of constant total surface dS/dt = 0

dS
dt
¼ 2

X
l

2prl
drl

dt

¼ 4pL
niCi

X
l

ðl� l1Þð1þ elÞrl � Nb

 !
¼ 0 ðA7Þ

which gives

l� l1 ¼
b

hri þ heri ðA8Þ

In the FDR theory, it was assumed that all the incoming
flux of copper is consumed by the growth in the total vol-
ume of the scallops. As a result, it was shown that [4]

3

2

n
ni

d
DDC

Ci
¼ 3

N

X
l

r2
l

drl

dt
ðA9Þ

Applying Eqs. (A6) and (A8) to (A9)

1

2

n
ni

d
DDC

Ci
¼ 1

N

X
l

r2
l

drl

dt

¼ L
niCiN

X
l

r2
l

bð1þ elÞ
hri þ heri �

b
rl

� �

¼ Lb
niCi

hr2i þ her2i
hri þ heri � hri

� �

¼ Lb
niCi

hr2i � hri2 þ her2i � hriheri
hri þ heri ðA10Þ

Eq. (A10) immediately gives, together with Eqs. (A6) and
(A8)

drl

dt
¼ k

9

ð1þ elÞ � hriþherirl

hr2i � hri2 þ hr2ei � hrihrei
ðA11Þ

with

k ¼ 9

2

n
ni

DDC
Ci

d ðA12Þ

So far, one can only treat this problem numerically.
A simple numerical method developed for LSW case

was used for noise in the FDR case [13]. Taking into
account that scallops are consumed one by one by their
more successful competitors, one can numerically solve
the set of N differential equations for squared radii

dr2
l

dt
¼ 2k

9

rlð1þ elÞ � hri � heri
hr2i � hri2 þ hr2ei � hrihrei

ðA13Þ

Fig. 8 presents size distributions for different noise levels
obtained by the numerical method. The histogram in
Fig. 6c is shown along with numerically calculated curves
for comparison. The noise leads to broader, more symmet-
rical and less sharp distributions. The distribution should
change with time owing to the noise, but the standard devi-
ation tends to converge to some limit, depending on the
noise level. If one takes m = 0.1, the standard deviation,
skewness and kurtosis are 0.389, �0.029 and �0.56, respec-
tively. If m = 0.17, they are 0.412, 0.087 and �0.59, which is
closer to the experimental data.

Fig. 8. Numerically calculated PSD (solid line) with noise of (a) m = 0.1 and (b) m = 0.17. Histogram in Fig. 6c is shown for comparison.
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