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ARTICLE INFO ABSTRACT

Keywords: In present work we discuss the problem of introducing stochasticity into 3D atomistic kinetic mean-field simula-
Regular solution tions. As this is a new approach for simulating the time evolution of material systems, it should be positioned in
Mean-field the field of available methods. Compared to the most used stochastic techniques: while atomistic kinetic Monte
Monte Carlo Carlo (KMC) methods generate microstates of the system they simulate, stochastic kinetic mean-field (SKMF)
I:;‘;;“Ody“amics of solutions seems to generate mesostates of the system during a finite time-window. Previously, strong interrelation have

been found for the dispersion of composition fluctuations in ideal solutions between SKMF states and averaged
KMC states. In present work we compare the statistical nature of fluctuations in the two approaches in case of
equilibrium solid solutions with non-zero mixing energies. At the investigated high temperature cases we show
how at a certain noise amplitude in SKMF the composition fluctuations can be related to results received by av-
eraging a certain number of independent KMC states. Furthermore, the correlation between the neighboring
sites, emerging because of the chemical interactions, shows the same statistical behavior in both methods as

Fluctuation phenomena
Statistical mechanics of model systems

well.

1. Introduction

Mean-field approach is a well-known ‘zero-approximation” ap-
proach to many physical and chemical problems enabling to grasp the
basic characteristic of many phenomena without pretending on rigor-
ous derivations and results. Among the most popular examples-Van der
Waals theory of real gas [1], Vlasov kinetic mean-field equation for
many-body systems and its application to plasma as well as to so-called
“non-local crystal theory” [2,3], Weiss mean-field model of magnetism
[4], Hartree-Fock self consistent (mean-field) approach to electron con-
figurations in atoms and crystals [5], Bragg-Williams approximation in
ordering theory [6], Khachaturyan’s concentration waves approach to
the theory of alloys [7]. An interesting quasi-1D modification of the
mean-field approach to kinetic problems of atomic transport in solid
state was suggested by George Martin in 1990 [8]. Martin’s scheme
(Kinetic Mean-Field — KMF) self-consistently reproduces Boltzmann dis-
tribution in the marginal equilibrium case. Application of this scheme
to the initial stages of interdiffusion in nanofilms with a strong diffu-
sion asymmetry demonstrated the possibility of sharpening of
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diffusion profile instead of broadening. This predicted effect was found
experimentally [9,10]. It was also used for calculating kinetics and size
effects in surface segregation phenomena [11,12].

In Martin’s kinetic mean-field model the temperature effect is taken
into account via Arrhenius law for jump frequencies and for corre-
sponding atomic fluxes. Yet, since the concept is a mean-field one, the
fluctuations in free energy, in this model, can only relax but never be
created! [13] “In real life”, homo-phase and hetero-phase fluctuations
are also related to temperature, but in the mean-field model this side of
it is not considered. Thus, the account of temperature in the mean-field
concept is not complete. It takes into account the overcoming of barri-
ers during atomic jumps, but not the overcoming of nucleation barri-
ers, due to neglect of concentration and order fluctuations. Thus, the
first-order transitions cannot be properly described.

To compensate this drawback, noise can be introduced into the
mean-field scheme. In case of atomic transport, the noise of concentra-
tion and of order parameter was introduced into the Onsager scheme
following the fluctuation—dissipation theorem, for example, by
Khachaturyan et al. [14,15]. Yet, this method had some limitations: (i)
Onsager scheme for atomic local fluxes was linear and not self-
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consistent: Onsager coefficients and their activation energies were not
interrelated with local composition and its energetics (contrary to Mar-
tin’s approach). In reality, during the very initial stages of diffusion in
highly asymmetric systems the flux is not proportional to the difference
of chemical potentials, but, for example, to the difference of their expo-
nents [16,17], (ii) Order parameter fluctuations were introduced inde-
pendently of concentration fluctuation. On the contrary, in Martin’s ap-
proach the order is not something independent, instead it is deter-
mined by the oscillations of local concentration (unary probabilities at
the sites) between sublattices.

Introduction of stochasticity into Martin’s mean-field approach
must be possible in many different ways. One is that instead of apply-
ing the noise directly as composition fluctuations, it is introduced into
the system via the uncertainty of the atomic flux. There are at least two
ways one can argue that this is physically viable: i) Even if jump fre-
quency (inverse transition time) is fixed, the number of transitions dur-
ing some finite time interval dt is a random value governed by Poisson
distribution - and it provides the scattering of the atomic flux (number
of transitions per dt) ii) In an alloy the activation energy of a jump de-
pends on the exact atomic configuration. At the same mean composi-
tion we always have the spectrum of possible configurations, and
hence, the spectrum of jump frequencies — in this case, the stochasticity
arises in the jump frequency itself.

The stochastic kinetic mean-field approach is useful, because the re-
sulting states of the system are close to what an imaginary, atomistic
measurement would see during a finite time window. One might see it
as a coarse-grained view of the timescale. This makes the processing
and understanding of the results usually quite straightforward. Though,
understanding exactly what is happening in an atomistic kinetic mean-
field model if it is “stochasticised” via the microscopic fluxes is impor-
tant for positioning its applicability. The results shown in present work
are but one step of a long journey understanding the nature of fluctua-
tions in SKMF. First, we will investigate the fluctuations of homoge-
neous, high-temperature states of binary systems with chemical inter-
actions between the species, where both positive and negative mixing
energies will be considered.

2. Theoretical background

In Martin’s approach the master equation for C; finding probability
of A atom on site i, based on balance of local in- and out- fluxes for any
site, self-consistently used the mean-field approximation for calculation
of energy barriers in the jump frequencies. In the case of exchange
mechanism in 3D lattice with Z sites in the first coordination shell it
means [18]:

dc. A A
3 far-ar]=-Z a0 -n, - p=clon).
= =aN (€))
JME JME
4 i

The I';; exchange frequencies between A and B on the neighboring sites
i and j, accordingly, are determined in [8,18] via Arrhenius law like
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where kg is the Boltzmann constant, T is the absolute temperature, v
denotes the attempt frequency (related to the Debye-frequency), Esaddle
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is the saddle-point energy (here assumed to be the same for all jumps).
E! and Ef energies before jump are calculated in the nearest neighbor

pair interactions approximation (Vya,Vpp,V4p) and without any ac-
count of correlations — in the mean-field approximation:

zZ
E;l = Z [CinVAA + (1 - Ci") VAB] ’EJB
in=1
mZ 3)
= Z [CnVap + (1= Cyy) Vs] -
Jjn=1

where in is the nearest neighbor of site i and jn is the nearest neighbor
of site j. Separating all the composition independent parts we can intro-
duce I'y:
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where V="V, — (Vys+Vss)/2 is the energy of mixing and
M= (V4 — Vgp) /2 is the term that represents the exponentially com-
position dependent diffusion coefficient [19].

In 2016 we introduced a new simulation method called SKMF (Sto-
chastic Kinetic Mean-Field), based on introduction of the noise in the
reason of fluctuations of composition instead of directly fluctuating it
[20]. This can be achieved by replacing JZIF and its pair J]N,IF in Eq. (1)
with sums of two parts:

i
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where sz,“: and J/N,[F
atomic fluxes, but they are extended by an additive dynamic Langevin
noise term:

remain the same mean-field approximation for

A
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where A, is the noise amplitude, dt is the simulation timestep and u;
and u, are independent, uniform distribution random numbers on the
[0,1) interval. For considerations on the detailed balance see Section II.
of [21]. Alternatively, one can use many different noise implementa-
tions. An option can be noise with normal distribution generated by the
Box-Muller transform [22] from two uniformly distributed random
numbers on the [0,1) interval. Though, in our implementation we used
(7) and the investigation of the effects of different noise implementa-
tions is beyond the scope of this work. We previously applied this type
of noise for exchange mechanism and also for vacancy mechanism. It
was utilized for modelling precipitation, spinodal decomposition, tracer
diffusion, ordering, ternary systems etc. [23-26]. Nevertheless, so far
the basic principles of SKMF approach were discussed and proved in
details only for the case of ideal solution [20]. Namely, for the case of
ideal
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solution:

a)Composition deviation (mean squared fluctuation of composition at
one site) is proportional to the squared noise amplitude:
. . 2
(i) | L)
) V= ———— . 8
i N ()

b)Using of certain noise amplitude in SKMF is equivalent to averaging
 runs of Monte Carlo simulations, with

M Lo
T = =) 2 (©)
c(1-c)4

In other words, ./ is a finite number of copies in the canonical ensem-
ble over which the averaging is done. Zero noise is equivalent to the in-
finite number of copies in the canonical ensemble, and it is mean-field.

Both Egs. (8) and (9) were discussed, proven analytically and checked
numerically for the case of ideal solution in Ref. [20].

In present work we consider in details the fluctuations in non-ideal
solutions with positive as well as with negative V mixing energies
(meaning tendency to phase separation and ordering, respectively). We
will examine "high” temperature solutions, by which we mean:
kT 7 10

when the regular solution is beyond the critical temperature, so there is
only one stable, solution phase in both immiscible (V > 0) and order-
ing systems (V < 0). In the modelled FCC systems (Z = 12) this will
mean | V| <0.1666ky T values for every cases.

Here we will consider a homogeneous (apart from local fluctua-
tions) binary FCC solid solution with equal average probability (con-
centration) of A atom being found at any site:

(€)=(g)=C an
Local concentration (at site i) is fluctuating:

C;=C+45C;. (12)

As before, we are, first of all, interested in concentration dispersion
(which is of course positive and the same for each site of globally ho-
mogeneous system:

X0 = (6C,6C}) . 13)

Composition fluctuation in clusters containing central atom and all
or some part of the nearest neighborhood, can be found for various
cluster definitions. In this work we use the following:

2
8Ci+ Y7 8C,,
X0,cluster = 1+—Z . (14)

Here 1 represents the central atom and Z = 12 is the number of sites in
the first coordination shell.

Despite initial neglect of correlation in the basic equations of SKMF,
it is physically evident that in case of positive mixing energy, when the
alloy has a tendency to decomposition (which becomes successful at
low temperature), the neighboring sites should demonstrate the ten-
dency to fluctuations of the same sign, so that the spatial correlation

X, = (6C;6C;,) (15)

is expected to be not zero, but positive. On the contrary, in case of
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negative mixing energy, when the alloy has a tendency to ordering, x;
is expected to be not zero, but negative.

Immediate reason of correlations is a dependence of jump frequen-
cies on the local concentration fluctuations:

I, = Vo exp <—% =
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It is easy to show that

Therefore,
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where M= (V,,— V) /2 and using the notation of Ref. [19]

M
m= 2Zm (19)

for the exponential composition dependence of interdiffusion coeffi-
cient:

D(C) = Dyexp(mC). (20)

3. Method of comparing SKMF to atomistic lattice kinetic Monte
Carlo simulations

To gather the statistical data from SKMF simulations we used a
sample with (20 x 20 x 20)/2 sites with periodic boundary conditions.
The simulations were run using dimensionless parameters,
V=v/ (kgT) and 4, =4,/+/T, and the dimensionless timestep was
dr = dt-T\y = 1073 and were started from homogeneous ¢ composition.
The system was left for 104 timesteps to thermalize, afterwards the sta-
tistics were collected over 10° timesteps. The results did not change
significantly by either increasing the system size or the averaging time
interval or by changing the timestep.

In Ref. [20] comparison of SKMF composition fluctuations to the
ones in averaged runs of one-vacancy residence time atomistic kinetic
Monte Carlo (KMC) was made. It is important to note that because we
average independent states, in this comparison the exact method be-
hind kinetic Monte Carlo is not important. It is just a way to generate
independent microstates of the system. Furthermore, the mean squared
fluctuation of composition is determined only by the thermodynamics
[27]. In present work we do not investigate the kinetics, where the cor-
relation effects of the vacancy mechanism would be important in KMC.
In the applied averaging scheme it has no effect at all. The interaction
energies between atoms and the vacancy are Vyy = Vpy =0, otherwise
the same thermodynamic parameters were used.

We follow up with the idea and in this work we perform the com-
parison for regular solid solutions. For this we extended out the
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way we average the states of KMC simulations. In [20] KMC runs were
started from the same random configuration and separate runs have
been averaged after 80 Monte Carlo steps (MCS). (By 1 MCS we under-
stand the number of vacancy jumps where on average every atom of the
system jumped once, i.e. for a system with 4000 sites this means 4000
vacancy jumps.) In current work we changed the method slightly and
for this we applied the ergodicity idea (average over ensemble for the
system in equilibrium is equal to the average over time). During the
Monte Carlo simulation starting from a random configuration in a sys-
tem containing (20 X 20 x 20)/2 particles (of which one was a vacany)
with periodic boundary conditions we saved the states of the system af-
ter every 100 MCS. In these regular solid solutions the saved states can
be considered as completely independent, though, still part of the same
timeline. (Let us note that while in this work this might not play a huge
role, in other cases this approach might make the comparison of SKMF
and KMC possible not only in the case of equilibrium states or during
steady-state processes. It is very likely, that in non-equilibrium or non-
steady-state cases the averaging technique for KMC should be more
sofisticated, e.g. using exponentially weighted moving average [28,29],
and that will probably modify the relationship between the two meth-
ods. Even though the authors have the intent to investigate such sce-
narios in the future, it is beyond the scope of current work.) Then we
averaged .# number of states as a moving average using the composi-
tions (0,1 or 0.5 for the vacany) on the same site in the different states
following each-other by 100 MCS. Then we used these average compo-
sitions as finding probabilities and similarly to SKMF we calculated
composition dispersion x( and spatial correlation xy.

4. Results and discussion

The rather complex, but still approximation-heavy theoretical rea-
soning behind the results can be found in the Supplementary Materials
[30] and in [13]. The analytical calculations generally show the same
tendency as the simulations and for - values not too far from 0 give
very good approximations of the simulation results. Note, that in the
followings we take the case of C = 0.5and M = 0 for which T = Ty

4, A

The main idea of the previous results obtained in paper [20] can be
demonstrated again by Fig. 1. using now the new averaging method, in
which results of SKMF calculations and averaged KMC calculations are
superimposed.

The logarithm of x3*M dispersion in SKMF is plotted against the
logarithm of Zi squared noise amplitude (bottom x axis), and simulta-
neously the logarithm of x5™C dispersion in KMC (averaged over .
Monte Carlo states, in other words, over .Z copies of the ensemble) is
plotted against the logarithm of .#-! (top x axis). Not only the slopes
(equalling 1) coincide, but even the values. This means full mutual cor-
respondence in ideal solutions between Monte Carlo averaged over .#
copies and SKMF disturbed by noise of flux with squared amplitude

~2 _ _
4,=1/[c(1-C).a].

When, in this paper, we switch to non-ideal solid solutions with
non-zero mixing energies, the proportionality still holds, but the con-

stants of proportionality kgt in the following equations become a
function of 77 [13]:

XSKMF kgﬁgp y [Z‘ (1 h Z‘) an, (22)
2KMC — RMC [6(1 —(_?)/%"]. (23)
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Fig. 1. Proportonality of Xy in ideal solid solution with Zi in SKMF simulations (bottom

x-axis) and with #-! in averaged KMC simulations (top x-axis). Note, that the straight
lines are not fits, but the analytical predictions from Egs. (8) and (9).

Note, that on the double-logarithmic scale of Fig. 1 the change in kg gte
would result in a vertical shift with a slope still equalling to 1. Inde-
pendently performing the fittings for SKMF and KMC results in cases of
different 7 values, then plotting the &y gt <I7) functions, we receive the

data shown in Fig. 2. The SKMF results resemble very much the theo-
retically estimated curve [30]. But as we are averaging independent
states of the KMC simulations, our finding probabilities received by the
averaging process are simply statistical values, consequently indepen-
dent of 7. Though, the high value at j; _ ( | raises the possibility that
in that case the sampling distance of 100 MCS was not high enough.
Furthermore, this might point to the direction, how introducing a dif-
ferent averaging scheme to KMC might keep the time correlation and
would result in a similar behavior to SKMF, but the authors will keep
the testing of this idea for another time.

1.25 ———————
SKMF (0.01 < 4, < 0.20) —e—
KMC (102 € M < 10%) —5—

1.2 |- i P
1.15 -

i 1.7 %
o i = -

£

W *
| g ]
s

1
0.04 0.08 012 0.16

o
P T—
>—E—l

0.95 U ! 1 !
—0.16 —0.12 —0.08 —0.04

= S e H—E—

Fig. 2. Fitted ko gjte values of Egs. (22) and (23). For SKMF we used results from 20 dif-
ferent noise amplitudes between 0.01 and 0.20 for the fitting. For KMC we used 7 differ-
ent ./ values between 102 and 10*, which covers roughly the same range in x(. (See Fig.
1.) The error bars shown are the uncertainty of the fitted kg gt values [31] and represent
+ 20, e.g. the 95% confidence levels. The relative standard deviation of the sampled xq
values were always under 3.5%.
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If we really want to compare the dispersion in the two different
simulation techniques for regular solutions without complicating the
averaging process of KMC, we should use a cluster containing more
than one site. In the current work we used a cluster of 13 atoms (1 cen-
ter atom with its 12 nearest neighbors) described by Eq. (14). Fitting
ko, cluster constants of proportionality in [30,13]:

~ 12
B, = <[ (1-) 4 @9
KMC  _
xO,clustcr - kOKclustcr [C (1 - ) A ] (25)

for SKMF and KMC independently for different values of 7, the depen-
dence on it is shown in Fig. 3. Comparing SKMF and KMC results, the
similar behavior is evident by the figure (that also resembles the theo-
retically estimated behavior [30]), but larger and larger deviation can
be seen the further away 7 gets from O.

Looking at the definition in Eq. (14) it is clear that the site-wise dis-
persion affects the cluster-wise dispersion, so some normalization can
be done. Note, that because both X cjuster and X( are proportional to
A squared noise amplitude in SKMF and to .#~! reciprocal averaged

number of states in KMC:

in SKMF :
R G 1 N 8 @0
ngMF kg];]:gp [C(I—C);ln]z kﬁ.‘:ﬁﬁp

in KﬁNICi
xm‘iler _ REMC % [C(FC)J%“] _ Ky spaer 27)
BT RSO ] T R

. c ~2
Xo cluster/X0 = Ko cluster/Ko,site is @ measure, which is independent of A,

noise amplitude in SKMF and also independent of ! reciprocal aver-
aged number of states in KMC. Consequently, kg qyster/Ko site Should
depend only on the thermodynamics of the system. This is exactly what
we can see in Fig. 4., the points from SKMF and KMC match perfectly,
proving the mutual correspondence between the two methods in case
of regular solid solutions, too.

It can be shown that in regular solutions spatial correlation between

neighboring atoms emerges. (For details see the
025 . — . - . .
SKMF (0.01 < 4, <020) o
KMC (10° <M <10') o o
0.2 - i B
o
o
y 0.15 = Tl
‘3 o]
B, o]
&£ a
0.1 - a 8 -
a =]
! ! 1 ! 1 ! 1

0
—0.16 —0.12 —0.08 —0.04 0.04 008 012 016

i
0
v

Fig. 3. Dependence of fitted proportionality factor kg cjuster 0n 7 in Egs. (24) and (25).
The relative asymptotic standard error of fitting ko cluster to the average Xq cluster values
remained under 0.5% for all cases of SKMF and under 2.5% for all cases of KMC. Error
bars are not shown for the sake of clarity as they would be similar in size to the markers
used.
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Fig. 4. Fitted constants of proportionality ko cluster from Eqgs. (24) and (25) (See Fig. 3.)
divided by the according fitted constants of proportionality kg sjte from Egs. (22) and (23)
(See Fig. 2.). At a certain C average composition ko,cluster/ko site depends only on the
thermodynamic parameters of the system and accordingly, SKMF and KMC give back the
same results.

Supplementary Materials [30].) When comparing the two simulation
techniques, we must investigate if their behavior is similar in this
sense, too. In Fig. 5. we show the dependence of x; = (6C;6C;,) on 7 in
two-two cases for both SKMF and KMC. The particular values of Zi and

A were chosen for visualization purposes based on similar x, disper-
sion values in the case of jy— (. (See Fig. 1.) Comparing the results of
SKMF and KMC simulations, the behavior is similar to previous ones,
the deviation of the two methods seemingly gets larger with the larger
absolute value of 7. In Fig. 6. we show the dependence of x; on Zi in
SKMF (bottom x-axis) and on ,»#-! in KMC (top x-axis) for two values
of 77. The slopes of the fitted lines are 1 due to the double-logarithmic

plotting and the proportionality between xSKMF and Zi squared noise

amplitude in SKMF (bottom x-axis) and between foMC

versed number of averaged states in KMC (top x-axis).
Once again, in regular solutions the k; constant of proportionality
depends on 7 in the following equations [30,13]

and #-! in-

—0.16 —0.12 —0.08 —0.04 0.04 0.08 012 0.16

6-10" — .
SKMF A, =020 o
5.-10* - EKMCM= 100 o o
a
4-107* - SKMF 4,=009 v 7
KMC M =500 & o
F 3 104 o
2 8
E_g’ 2-107% - a -
I ;
- : Q
g 1107 i o] s b
H B n
= b4
L g Ber* T
0 o & ¥ ¥ ¥ HR B
B :
~1-10-* - i i
1-10 g @ & i
o B8 é
=i 04 2 L i
0
v

Fig. 5. The dependence of x; = (6C;6C;,) on I in SKMF and KMC. For visualization the
Z: and ./ parameter pairs were chosen based on the similar x dispersion values in the
case of 7 — 0- (See Fig. 1.).
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Fig. 6. Dependence of x| = (6C;6C;,) on Zi in SKMF and -1 in KMC for two values of

7 and fitted functions based on Egs. (28) and (29). Due to the double-logarithmic plot-
ting the proportional connection is shown as a straight line with slope 1.

~ 12
X?KMF _ k?KMF « [E‘(l _E) An] , (28)

RKMC _ e [5(1 _E) /%‘1]. (29)

In Fig. 7. we show the fitted k; constants of proportionality as func-
tions of 77. The results resemble the theoretically expected behavior
again [30]. In terms of deviation between SKMF and KMC a similar
tendency can be seen as in Fig. 3. The expected value of x; = (6C;6C;,)
correlation parameter clearly depends on the expected value of

xo = (6C;6C;) dispersion. Considering again, that both x; and x, are
both proportional to Zi squared noise amplitude in SKMF and to !

—0.16 —0.12 —0.08 —0.04 0.04 008 012 016

reciprocal averaged number of states in
i : ' = . ' 1 1 1
02 1~ SKMF (0.01 <4, <0.20) o 9
KMC (102 <M <10Y) o
0.15 |- : .
)
: o]
01 - g g
; m
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[] (—
~0.05
o i
e | 1 ! i 1 1 1
0
v

Fig. 7. Dependence of fitted proportionality factor k; on 7 in Egs. (28) and (29). The
relative asymptotic standard error of fitting k; to the average x; values remained under
0.5% for all cases of SKMF and under 3.0% for all cases of KMC (with the natural excep-
tions of the values at the origin.) Error bars are not shown for the sake of clarity as they
would be similar in size to the markers used.
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KMC:
in SKMF :
ngMF - kﬁf_xe[C(l—C>2n]z - kg%,
in KMC :
)ﬂ _ klfMCXEj(l*?)/”_l _ kllﬁM_C (31)
T k:;z/il‘gx C<1_C),ﬂ-‘ ﬂﬁ(e:’

X1 /xg = k1 /kosiee is another measure, which should depend only on the
thermodynamic parameters. This is exactly what we can see in Fig. 8,
where the values of kq/kq from SKMF and KMC are very close to each
other. In Fig. 8 we show the results for two other average compositions
(C=0.3and C = 0.1), for which we also performed the simulations and
comparisons, though, with smaller statistical samples. The data points
are still in close proximity to each other, signifying that the deduced
relationships hold also for other compositions. This is expected as we
did not use the specific value of the average composition in our consid-
erations.

5. Conclusions

We Investigated the effects of introducing stochasticity into 3D
atomistic kinetic mean-field simulations by studying of dispersion and
correlations in equilibrium regular solutions by numeric simulations
using SKMF method and atomistic kinetic Monte Carlo simulations.
The results demonstrated that under the investigated, high tempera-
ture, equilibrium conditions the introduction of the noise of atomic flux
into kinetic mean-field is equivalent to averaging over the finite num-
ber of copies within the canonical ensemble (or over the Monte Carlo
runs).

Dispersion and correlation are proportional to the squared noise
amplitude (inversely proportional to number of system copies).

Proportionality factor kg gjre for dispersion per one site is non-mo-
notonic, since tendency to ordering as well as tendency to decomposi-
tion leads to larger oscillations at atomic scale.

Proportionality factor kg cyster for dispersion per cluster is monoto-
nic, since tendency to oscillations from site to site at negative mixing
energies is averaged and smeared even over the cluster of 13 sites.

! T T T
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015 SKMFC=03 o il
KMCCT=03 o
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v

Fig. 8. Fitted constants of proportionality k; from Eqgs. (28) and (29) (See Fig. 7.) di-
vided by the according fitted constants of proportionality kg site from Eqgs. (22) and (23)
(See Fig. 2.). At a certain C average composition k;/kq sie depends only on the thermo-
dynamic parameters of the system and accordingly, SKMF and KMC give back the same
results. We show the match at three different average compositions. The dashed lines are
just for guiding the eye.
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Proportionality factor k; for correlation, is negative for negative
mixing energy and positive for positive mixing energy.

SKMF method is applicable to simulation of homophase fluctuations
and its statistical behavior in terms of fluctuation and spatial correla-
tion can be perfectly matched with those of averaged Monte Carlo sim-
ulations following the relationship:

The natural next step should be to test if these properties are trans-
ferred to heterogeneous fluctuations at lower temperatures leading to
nucleation. Due to the complex nature of that problem it will be inves-
tigated in another paper. Based on the results of this work the authors
expect that for keeping the analogy between the two techniques at
least the averaging scheme for kinetic Monte Carlo should be modified
for the preservation of time-correlations.
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