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MOVING INTERPHASE INTERFACES AS VACANCY GENERATORS,

VACANCY GRADIENTS, NONPARABOLIC GROWTH AND ALL THAT

AM.Gusak (Department of Physics and Mathematics, Cherkassy Pedagogical
Institute, Shevchenko str.81, Cherkassy,Ukraine, 257017) and K.P.Gurov (Institute
- of Metallurgy, Leninski prosp. 49, Moscow, Russia)

Abstract

Growth kinetics of the intermediate phase layer in the process of reactive
diffusion can be influenced by the nonequlibrium vacancies in two ways: first, if the
growing phase has a smaller equilibrium vacancy concentration than the initial
materials it can "eat" extra vacancies together with atoms A B necessary for its
growth. Production of extra vacancies is proportional to the growth rate and
decreases with time leading to the time-dependent diffusivity of the phase layer and,
therefore, to the nonparabolic phase growth. Second, if the mobilities of species A
and B in the growing phase differ significantly then there appears the vacancy flux
from one interface to another. If the vacancy sources/sinks at the interphase
boundaries are far from being ideal the vacancy undersaturation at one and
supersaturation at another interface appear leading to the vacancy gradient. Vacancy
gradient changes the fluxes leading to the 3-stage growth kinetics with rather long
linear stage in the case D, >> D, (or vice versa). New theory of mutual diffusion in
binary alloys is presented taking into account nonequilibrium vacancies as well as
vacancy sources/sinks. It gives usual Darken results in macroscale.
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1 Introduction

It is well recognized that the nonequilibrium vacancies play an important role during
irradiation of alloys. It is not so well recognized that nonequilibrium vacancies may be important
without any irradiation, in the processes of mutual and reactive diffusion. In these cases
nonequilibrium vacancies are generated by the difference of partial diffusivities (D, — D,) or/and
by the movement of interphase boundaries of the growing intermediate phase layers. Moreover,
nonequilibrium vacancies seem to play major role in such exotic situations as sofid state
amorphizing reactions (SSAR) or anomalous diffusion during fast heating of bimetallic systems.

In 1972-1974 Nazarov and Gurov suggested rigorous microscopic analysis of mutual
diffusionin binary alloys taking nonequilibrium vacancies into account but neglecting the influence
of vacancy sources/sinks [1-3]. One of their results was that the concenration profile evolution is

. . . D;
governed mainly by alternative coefficient D, = %“é‘??, (1)
AA BB

( @- thermodynamic factor, p = &%) instead of Darken's result
kT &C,

DD = ( C,D, + CBD;)Q’ 2)

In section 2 we show that the results (1) and (2) may coexist in the model of the regular chain of
ideal vacancy sources/sinks. Coefficient D,,; describes the details of concentration profile between
sources/sinks in the "mesoscopic" space/time scale (a << dx<</, & - atomic size, / - distance
between sinks). Coefficient D, governs the process of diffusion in “macroscopic" scale (dx>> /).

‘Similar result for time scales is obtained in the model of continious distribution of nonideal
sources/sinks: Dy, for f<<7,/C,, D, for ¢t>>7,/C. and nonparabolic unlocal diffusion
equation for ¢~ 7,/C, (7, - relaxation time for vacancies, C,- their equilibrium concentration). In
Section 3 we consider the role of nonequilibrium vacancies in the process of intermediate phase
growth in the case when the moving interphase interfaces are nonideal vacancy sources/sinks.

II. Mutual diffusion in the one dimension model of regular chain of ideal vacancy
sources/sinks

~ Let us consider the mutual diffusion in the inhomogeneous binary substitution alloy modelled
by the one-dimension periodic chain of ideal sources/sinks (x, = ni, I- distance between sinks) at

‘which vacancy concentration is always at equilibrium and between which diffusion of both’ species
goes. We introduce simultaneously two space scales by using concentrations C,,,(x,+ &2,
O<&<l.  Linearization = procedure  gives: Co(x,+ED=Cx,. O +u (&0,
Clx,+8=Clx,H+HEDH=C, + A& D), u<< C, v<< C,, (We neglect here the dependence
of C,, on composition. One can show that this suggestion does not change the main results.)
Equatlons for variables u and v are linear:

Su,/ét=D,, ﬁuA/agupA, Fveé, -
&vdt= D, Fu,[38+ D, Fvo&
These equations can be derived from the general Onsager relations for A— B— v system taking into

account vacancy component (neglecting Manning corrections [4]) and the small values of # and v
compared with C, and C,,. Here D, depend on C but not on u:

D,=Dg D, =~ Cz,Dj“,
D, = _(5(0:4 - D:9)> D, = CADA; GBD; @)

ve
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The system of eq's (3) can be solved for every interval x=x,+&e(x,, x,+/) with boundary

conditions, C,(x,8)= C,, < {&=0)=Y&=1)=0 (5)
using the diagonalization procedure:
u}l} ay i u, iy, AN '\""‘1' % .
= =3 = D= D§ . [{)
[V‘;z) [321 322)( VJ 8( v) aba 1y ©
| b _ L FW =
=D, =1,2
p 2 )

Here the eigenvalues 1), D, play the role of mutual diffusion coefficient and of vacancy diffusion
coefficient respectively:

D = CAﬁAfng* = D, D2 = CADAC';CBDE _[14._‘422), Q/Dz = O, << | (8)
Equations (7) for /=12 are independent, but not the boundary condltlons eq.(5) lead to the
following-relation
D, D,
Pgt) - B (gt) o 22 0 D PO o ®
Due to fast vacancy diffusion (see [5]) evolution of w2 is much more faster than of u}'), and the
solution of eq.(8) for /=2 becomes quasistationary after £>> £/D,, e.g. much sooner than the

w')-profile substantially changes:

1 J
v‘;z)(t,é)'bizﬂ(%p_)(wm( £0)+ w'(¢,) 1“; (£,0) gjz

v

@(D' ﬁ) uA(tJ)"UA(t:O)
T[ u,(t,0)+ ; -’f)

It means that the vacancy flux, approximately equal to

. £ 0

jomD2ap % p P (5,- D) DD (1 p)p%Ca
| & & %

Thus, vacancy flux is constant in each interval and changes only at the interval boundanes

(vacancy sources/sinks). At the same time atom flux has following form:

du, v ) D,

(10)

v

== -D, —=- 12
Due to constant value of j, eq.(4) yields 2y _ 2w +0=D équf‘ a3)
T ot c‘:’.g’ o

e.g. evolution of concentration profile between vacancy sources/sinks (microscopic space scale,
BE<<1) is governed by Nazarov-Gurov coefficient Dy, (1). At the same time the full average
(over interval 1) A-flux has familiar form:
p%__Cp ;[ Dn,  COD-D) O'UA—_D 4 (149)
%3 CD+CEDB’ C D+ CD, CD.+CD, Ox

where D, = Do 3 '
Thus, in macroscopic scale (dx> /) mutual diffusion is described by Darken scheme.

Similar results can be obtained for time scales in the model of continious distribution of

nonideal vacancy sources/sinks. In this case one must solve the set of equations of type (3) in
which the vacany sources are taken into account by introducing the term —W’ 7., with 7

Ja=

v?

relaxation time for vacancies: 7, = Ii/ D, L, - average distance to effective sink. It was shown
L135



04.gif (1139x1743x2 gif)

in [6] that for the times £ << 7,/C, mutual diffusion is described by D, and for £>> 7,/C, -
by Darken theory. For f~ 7T /C diffusion is nonparabolic and nonlocal:

JD=0ry jexp(—T) (D,- D)%}‘Q | (15
oC, CD' aC, CD'
Ja=~ =-D

NG é’X CVD NG 5)( C‘,Dv
: —i - 2C,(t x
21) IJ.CXP(_‘:%]'(DA_ DB)‘—;(;“-)"dX" (16}

May be the simultaneous action of both diffusion coefficients Dy, and D), = can explain
why in the process of SSAR amorphous layer grows fast by diffusion but don't relax to crystailine
phase: If 1), >> D), then the coefficient D,,, governing the diffusion at microscale, is very small -

(= D), and coefficient Dﬂmt governing the macrofluxes through phase layers, is not small

("" A)

1. Nonequilibrium vacancies and linear phase growth

The growth of the layers of intermediate phases in the process of reactive diffusion sometimes

starts from a linear stage, Ax= ff, which only at long times of annealing is transformed into a
1

parabolic one Ax= kf*. The analysis of experimental results on phase formation shows that very
often a linear growth is observed for phases where mobility of one of the components is dominant,
In such phases large vacancy fluxes are formed. The vacancy flux due to difference of partial
diffusion coefficients of components in general case should experience jumps at interphase
interfaces. Therefore they should serve as sources/sinks of vacancies. We will consider a situation
when the power of boundaries as sources/sinks of vacanvies is not sufficient for maintaining their
equilibrial concentrations on the boundaries. In this case concentrations of vacancies will deviate
from equilibrium in opposite directions near different boundaries, that is between the boundaries
there appear gradients of concentration of nonequilibrial vacancies which, as it will be shown
below, can provide a linear stage of the phase layer growth.

Let between mutually unsoluble components A and B there grows the only intermediate
phase 1 (< (< +AQ). Let C,; (C,,) be a concentration of vacancies on the left

boundary A-1 (the right boundary 1- B), C,, - equilibrial concentration of vacancies in phase 1.
Suppose that mobility of A component is greater than that of B: D, > [J,, so that in phase 1 the
flux of vacancies is directed from Bto A, that is from the right boundary to the left one:

AC C.~C,
J,z(D,- D) oL )

-D,—
Ax Ax
.(Here and below we will neglect Manning corrections, since the whole presented model is a rough
approximation of real phase growth process). Considering that in phases A and B fluxes are
absent and, hence, jumps of the vacancy flux are determined only by phase 1, we can write the
equation of vacancy balance on the 1nterphase boundaries:

dC‘,L/ dt =~ Cﬂ; C.)lt,-Jj6 ~ (18)
VR/ dt=- VR ve)‘/ T, —J V/ ) (19)

where - thickness of the boundary layer, rv- relaxation time of vacancies.
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Let us consider a quazistationary regime (dC,;;,/ df=0), which is true at £>> 7, Then
from (17-19) we obtain the expression for overfall of vacancy concentrations between the right
and the left boundaries of the phase: _ _

AC, = C - C, =(27,/8)(D,~ D)AC/(Ax+2D,z,/6) (20)
The appearing overfall AC, of vacancy concenirations makes a contribution into fluxes of
components in the system of cristalline lattice:
Jo=-DyAqAx+(C, D,/ C)AC,/Ax @
from eq's (17,20,21) we obtain (according to Darken) the expression for an average flux along the
phase layer in the laboratory system coordinates:

Jy= jo+ Cojy=—J ,= —DAC(1+ 1, /AR [(Ax+ 1) (22)
where D= (D, + (1- §) D, - a mean interdiffusion coefficient, 7 = 2.1, r,/6=L} / o (L,
- the length of vacancy migration to the sink), J =/ -(DNG/ D), D,,; - the interdiffusion
coefficient according to Nazarov-Gurov (9), and always Dy, < D).

According to [7] for phases with narrow regions of homogeneity the flux is almost identical in
any point of the phase layer so that expression (22) canbe used in writing equations on the flux
balance on interphase boundaries, which lead to the following equation for phase layer growth
rate:

drxjdr= (1 G +1/(1- §))J,= DAG(G(- ©))-(1+ /A0 (Ax+4) @)

In a general case the layer growth according to eq.(7) has three stages, which are determined
by two characteristic thicknesses / and /: -

1
Q) Ax<<l (<1);2dAx/ dt= ky; [Ax; Ax= kPt (24)
(the initial parabolic stage), where :
!
ky=02D,A0AL-O) (25)
2) I, << Ax<< ] (has the meaning only if Dy; << D, ie.if D, << Dyor D, << D).
_ dAx/ dt=p; Ax= pt (26)
(the stage of linear growth) where = DACf (11 g i-¢ )) : 27
1
Gy Ax>>; 2Ax] dt= ki Ax, Ax=kf, (28)
1
(the established parabolic regime), where k= (2DAC/ G(1- G))? (29)

Thus, if in the growing phase one of the components is much more mobile than the other, we
should observe a linear stage of growth, whose upper limit j = LV2 / J is defined by the length of

vacancy migration to the sinks L . If we assume reasonable estimations of L, =~ 107 m,
&=0.5 nm, then /=20 pm, i.e. it is a quite considerable value.

As the length of vacancy migration is difficult to be measured but probably it depends weakly
on temperature (it is determined mainly by concentration of sinks) we propose the following
method of checking the given theory: according to eq's (25,27) constants of linear and parabolic
growth B and K are expressed by the same effective interdiffusion coefficient D in the phase,
here &/B=21=2L}[5. _

That is why it can be expected that Arrhenius dependences for K and f should give the same
activation energies. But if a linear stage is caused by a "classical” reason - a high potential barrier
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on the mterphase boundary - then it should be expected that the activation energy for 3 will be

8

- substantially greater than for .
Up to now we did not take into account possxble influence of nonequilibrium vacancies on the
diffusivity. This influence can be substantial if there is a difference between eqmllbnum vacancy

. concentrations of parent phases A B and intermediate phase. If, for example, growing phase has
a smaller equilibrium vacancy concentration than the initial materials it can "eat” extra vacancies
together with atoms A 5 necessary for its growth {8]. Since the vacancy diffusion is fast one can

AC, dAx

Ax dt’
where AC,=(1- G)C,,+ GC,,— C,, Obviously, there are also vacancy sinks in the phase

layer with relaxation tlme 7,. Thus, we have a following balance equation for the average vacancy

dv AC df_‘\x 12

eoncentratmn in the phase layer: — = —_— | (30)

dr AX dt T

consider these extra vacancies as generated inside the phase layer with the rate g~

v

Phase growth is determined by. the diffusivity depending oe V- a7 R - G (1 - C,') Z;
AC, dAx

" Ax dr

dAx _ (1' I J DAC 1
dt AX q(l— G) Ax’

2
where /= AC, DAC 7, . Its solution [é{) +1In (A—X) -1 26
c. Gi-¢) I ] TAC T,

than parabolic Ax(#) dependence reducing to parabolic at £ — 0.

At £>> 7T eq. (30) gives quasistationary solution v= T

obtains equation describing nonparabolic phase growth:

Conclusion

1. Mutual diffusion in substitutional alloys is described by Darken coefficient in macroscale and by
Nazarov-Gurov coefficient in microscale due to the influence of nonequilibrium vacancies.

2 Linear phase growth during reactive diffusion can be the result of coincidence of two factors: (1)
considerable difference between the diffusivities of species and (2) nonideal vacancy sources/sinks
at the interphase boundaries.

3. Nonequilibrium vacancies generated by moving interphase interfaces change the diffusivity in
the phase layer and also lead to nonparabolic growth.
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