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Abstract

A simple kinetic model of the interaction between the Kirkendall effect and the inverse Kirkendall effect in hollow nano-shell forma-
tion by solid-state reaction is presented. The difference in vacancy concentrations at the inter-phase boundaries (and corresponding
vacancy gradients) is taken into account as well as the curvature effect on the driving force of the reaction. A criterion for nano-shell
formation is proposed.
� 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The classic Kirkendall effect of interdiffusion in a diffu-
sion couple of A and B [1] showed that, when the flux of
A is not equal to the flux of B, a vacancy flux will be gen-
erated to balance the interdiffusion. Darken [2] provided a
kinetic analysis of the effect and included marker motion.
An implicit assumption used in the analysis is that vacancy
distribution in the diffusion couple is equilibrium every-
where. In other words, the sources and sinks of vacancy
are fully operative everywhere in the sample, for example,
by dislocation climb. On the basis of this assumption, there
are three important implications. First, a lattice shift or
Kirkendall shift occurs which can be measured by marker
motion. Second, because of the lattice shift, no stress is
generated. Third, because equilibrium vacancy is assumed,
there cannot be super-saturated vacancies, so no nucleation
of void and, in turn, no void formation can take place.
However, in actual diffusion couples, the vacancy sources
and sinks are often partially effective, and voids have been
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found and bending of the sample has occurred due to
stress, especially in the interdiffusion between a metal thin
film and a Si wafer. The voids are sometimes called Frenkel
voids rather than Kirkendall voids [3]. Strictly speaking,
under the assumption of Kirkendall shift, there should be
no Kirkendall voids. But experimentally, they can coexist,
so one can have two competing Kirkendall effects: Kirken-
dall shift and Kirkendall voiding [3–5]. Both are caused by
divergence of vacancy flux generated by the difference in
intrinsic fluxes of the main components. It is known that,
by using hydrostatic compression, void formation can be
suppressed, and lattice shift can be recovered [3]. However,
in nanosystems, where there is little space for dislocations,
and shift in spherical samples may lead to large stresses,
Kirkendall shift may be suppressed, and Kirkendall void-
ing is observed in its pure form [6–8].

The inverse Kirkendall effect refers to cases where an
existing vacancy flux (generated by some external forces)
affects the interdiffusion of A and B. A classic example is
irradiation, under which segregation in a homogeneous
AB alloy occurs because the irradiation has produced
excess vacancies and a flux of vacancies. Another example
is a homogeneous AB alloy with a hollow shell structure in
nanoscale [6–12], as shown in Fig. 1a. When such a hollow
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Fig. 1. Hollow nanoshell consisting of (a) initially homogeneous alloy or
(b) two shells. In case (a), segregation may hinder shrinking. In case (b),
the vacancy gradient between the inner and outer boundaries changes the
interdiffusion kinetics.

Fig. 2. Simplified scheme of sulfide nano-shell formation. At the
intermediate stage, the remaining metallic core is connected to the
growing compound shell by ‘‘bridges”. This geometry appears as a result
of the formation of voids at the interface at the initial stage of the reaction.
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nanoshell of a homogeneous alloy is annealed at constant
temperature, de-alloying or segregation of A and B occurs
[10]. This is different from thermomigration or the Soret
effect, which occurs in temperature gradient. The segrega-
tion in nanoshell takes place isothermally. This is due to
the Gibbs–Thomson effect, as there will be a higher
vacancy concentration near the inner shell surface than
that near the outer shell surface. Because of the vacancy
concentration gradient, the vacancy flux is induced, and
the hollow shell is unstable, and this leads to de-alloying
or segregation. The faster diffusing species will segregate
to the inner shell and create a gradient of chemical poten-
tial which will retard the vacancy flux. Provided the
vacancy potential is larger than the counter potential of
de-alloying, the hollow shell may transform to a solid
sphere in order to reduce the total surface area.

Thus, when one considers the interdiffusion of A and B in
a two-layer nano-shell structure, as shown in Fig. 1b, the Kir-
kendall effect and the inverse Kirkendall effect coexist, but
how they interact with each other is not completely clear.
If the flux of A, JA, is bigger than the flux of B, JB, the balanc-
ing vacancy flux JV will diffuse inward, which will counter the
vacancy flux due to Gibbs–Thomson effect. Conversely, if
JA < JB, the two vacancy fluxes will move in the same direc-
tion, outwards. In this paper, the term ‘‘Kirkendall effect” is
used to include both Kirkendall shift and Kirkendall voiding
(or Frenkel voiding). A detailed analysis of the interaction of
the Kirkendall effect and the inverse Kirkendall effect in
nanoscale particles is presented. The interaction is expressed
in terms of the interaction of vacancy fluxes, namely the dif-
ference arising between vacancy concentrations at the inner
and external boundaries (higher at inner boundary and lower
at the external one) should oppose the vacancy flux gener-
ated by the difference in mobilities of the main components
at interdiffusion. Therefore, one expects that, under critical
conditions, void formation in the hollow nanoshell can be
suppressed.

2. Kinetic analysis

Consider, for example, the formation of cobalt sulfide
(Co9S8 transforming to Co3S4) hollow nanospheres [6,8],
as shown in Fig. 2. Because Co is the dominant diffusing
species in cobalt sulfide, the voids form in the inner part
of the sphere, between the remaining Co core and the grow-
ing sulfide shell. The following simplified geometry of the
intermediate stages of reaction has been observed experi-
mentally [8]: the remaining metallic core inside, surrounded
by an ‘‘almost hollow” layer, contains ‘‘bridges” connect-
ing the core and the sulfide layer. The bridges provide paths
for metal atoms to diffuse and react with sulfur in the grow-
ing sulfide nanoshell. This picture is very close to the model
of a so-called divided (separated) diffusion couple, which
was proposed by one of the authors (AG) [13,14]. In this
model the diffusion contact between powders of different
materials is maintained by surface diffusion and sometimes
by vapor phase transfer.

This paper is restricted to the formation of a single com-
pound. Competition and sequential growth of phases will
be analyzed elsewhere. Let ri and re be the radii of inner
and outer boundaries of the sulfide layer, respectively.

The following assumptions will be made in the analysis
of interdiffusion in forming the nanoshells. (1) There is no
Kirkendall shift during phase formation, i.e., all vacancy
fluxes go to the formation of Kirkendall (or Frenkel) voids
instead of being annihilated by internal sinks, hence with-
out causing the lattice shift. (2) At the intermediate stage
(after nucleation of several initial voids), the voids sur-
round the remaining metallic core, which is connected to
the growing sulfide spherical layer by a few thin bridges,
as shown at Fig. 2. This means that the inner surface of
the growing compound shell is mostly free but provided
with very good diffusion contact with the remaining core
by surface diffusion along the bridges. (3) No internal stress
is involved. (4) Spherically symmetrical geometry is used.
(5) The surface tensions of the external and internal bound-
aries of the growing phase are assumed to be identical (for
the sake of simplicity).

The Laplace tension and compression of the sulfide
layer due to the curvatures of the inner and outer interfaces
will be taken into account in the analysis. However,
vacancy super-saturation is assumed to be outside the sul-
fide layer (in the Co core) at the initial stage of the reaction,
so voids can be nucleated. The curvature effect on vacancy
concentration exists, so the difference in vacancy concen-
trations at the inner and external boundaries of the sulfide
cannot be neglected. On the basis of the Gibbs–Thomson
effect, the equilibrium vacancy concentration at the inner
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boundary of the sulfide layer is higher than that at the flat

free surface ðcV ðriÞ ¼ cV 0
e

2cX
kTriÞ and, at the outer boundary, it

is lower than that at the flat surface ðcV ðreÞ ¼ cV 0
e�

2cX
kTreÞ.

Thus, a vacancy gradient exists in the sulfide layer. The
effect of curvature on the driving force of sulfide formation
(and, respectively, on the homogeneity range of sulfide) is
also included.

2.1. A simple case of the competition between ‘‘Kirkendall-

driven” and ‘‘curvature-driven” effects

Starting with a simplified situation, the initial stage of
compound nano-shell formation, when the shell thickness
re � ri is much less than the initial particles radius r0, is
considered. In this case, one can use the flux equation for
planar interfaces. Moreover, let the curvature effect be lin-
ear: 2cX

kTr0
� 1, so that

cV ðreÞ ¼ cV 0
e�

2cX
kTre ’ cV 0

� 1� 2cX
kTre

� �
cV ðriÞ ¼ cV 0

e
2cX
kTri ’ cV 0

� 1þ 2cX
kTri

� �
8><
>: ð1Þ

Then the product of the vacancy flux density and the atom-
ic volume (X) is determined by a simple equation, taking
into account the vacancy concentration gradient caused
by the Gibbs–Thomson effect:

XjV ¼ ðDm � DSÞ
cmðreÞ � cmðriÞ

Dr
� DV

cV ðreÞ � cV ðriÞ
Dr

� �ðDm � DSÞ
Dcm

Dr
þ DV cV 0

� 2cX
kT

1

ri
þ 1

re

� �
1

Dr
ð2Þ

Here, Dm ¼ D�mu;DS ¼ D�Su, where the thermodynamic fac-

tor u ¼ cmcS
kT

@2g
@c2

m
, and D�m;D

�
S are tracer diffusivities of the me-

tal and sulfur in the sulfide, respectively. Eq. (2) has taken
cmD�m þ cSD�S ¼ cV DV . (Thus, a correlation factor is ne-
glected here.)

Furthermore, Dcm ¼ cmðriÞ � cmðreÞ is the homogeneity
range of the compound (typically very narrow). Note that
the concentration of metal and sulfur, cm and cs, respec-
tively, are mole fractions, so cm + cs = 1, and 1/X is the
number of atoms per unit volume.

The first term on the right-hand side of Eq. (2) is an
inward vacancy flux caused by the difference in diffusivities
and leading to void formation. The second term in the
same equation is an outward vacancy flux caused by differ-
ent signs of curvature at the inner and outer boundaries
and counteracting the first term. After all the metal is con-
sumed, this vacancy concentration difference leads to col-
lapse of the nanoshell. Evidently, if the curvature effect
wins, meaning

ðDm � DSÞ
Dcm

Dr
< DV cV 0

� 2cX
kT

1

ri
þ 1

re

� �
1

Dr
ð3Þ

void formation becomes impossible, because the vacancy
flux should be directed outwards. At the initial stage, when
re � ri � r0, this criterion can be rewritten as
r0 <
2cX
kT
� 2ðcmD�m þ cSD�SÞ
ðDm � DSÞDcm

ð3aÞ

The criterion in Eq. (3a) is hard to use, because the
homogeneity range of the compound is very narrow and
usually unknown. Yet, this difficulty can be easily circum-
vented. Indeed, take

DmDcm ¼
Z cmðriÞ

cmðreÞ
D�mudcm ¼

Z cmðriÞ

cmðreÞ
D�m

cmcS

kT
@2g
@c2

m

dcm

’ �D�m
�cm�cS

kT

Z cmðriÞ

cmðreÞ

@2g
@c2

m

dcm

¼ �D�m
�cm�cS

kT
� @g
@cm

����
ri

� @g
@cm

����
re

 !
¼ �D�m

Dg
kT

ð4Þ

Here Dg is the compound formation Gibbs free energy
per atom (it has been measured for many compounds).
As a result, Eq. (4) can be reduced to the following form:

r0 <
2cX
Dg
� 2cm �

ððD�m=D�SÞ þ cS=cmÞ
ððD�m=D�SÞ � 1Þ ð5Þ

The non-dimensional parameter G ¼ 2cX
Dgro

is used as a
measure of the ratio of the curvature effect to the chemical
driving force of the reaction. Thus, in this simplified
approach, the condition of impossibility for a hollow shell
to form by the reaction can be represented as

G >
1

2cm
� ðD

�
m=D�SÞ � 1

ðD�m=D�SÞ þ cS=cm
ð6Þ

This simplified analysis neglects the influence of curva-
ture on the chemical driving force (in other words, on the
homogeneity range of the main components), and the
non-linearity of the Gibbs–Thomson effect for vacancy
concentration at nanoscale, spherical geometry. Moreover,
knowledge of the vacancy flux is not sufficient to predict
the reaction rate and the resulting void size. All this will
be modified below. Nevertheless, the simplified Eq. (6) is
relatively close to the graphical criterion obtained by a
more rigorous analytical and numerical analysis (presented
in Fig. 5).

2.2. General case

One starts from the flux balance for metal at the outer
boundary and the flux balance for sulfur at the inner
boundary. Flux balance means that the product of the con-
centration step across the boundary and the boundary
velocity is equal to the difference in fluxes on both sides
of this moving boundary. For the external boundary, the
flux balance for metal is more convenient, because one
knows for sure that both the concentration of the metal
and the outward flux of the metal are equal to zero. How-
ever, for the internal boundary, the flux balance of sulfur is
more convenient, because one knows almost certainly that
the solubility of sulfur in the metal can be neglected, and
no sulfur goes into the void, so that the corresponding
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concentration and flux of sulfur at r < ri are equal to zero.
Thus, each flux balance equation will use only one flux
(metal for the external and sulfur for the inner boundary).

The expression for both fluxes (Eq. (7a) and (7b)) takes
into account the input of vacancy gradients due to the
Gibbs–Thomson effect (the last term in Eqs. (7a) and (7b))
[10]. Note that the diffusion of the metal flux is directed out
of the shell; the diffusion of the sulfur flux is directed into it.

At the external radius re, one has

ð0� cmÞ
dre

dt
¼ 0� �Dm

@cm

@r

����
re

þ cmD�m
cV

@cV

@r

����
re

 !
ð7aÞ

At the internal radius ri, one has

ðcS � 0Þ dri

dt
¼ �DS

@cS

@r

����
ri

þ cSD�S
cV

@cV

@r

����
ri

 !
� 0 ð7bÞ

Concentrations of metal and sulfur inside the sulfide can
change slightly in the narrow homogeneity ranges for the
atomic fractions of metal and sulfur inside the sulfide,
respectively ðDcm ¼ �DcSÞ. Consider that

cm þ cS ffi 1;
@cS

@r
ffi � @cm

@r

Note that the fluxes in the lattice reference frame and
intrinsic diffusivities (instead of interdiffusivity) are used
according to the basic approximation of no Kirkendall
shift. The correlation factors of Manning’s vacancy wind
terms [15] are neglected, as they can change the results only
quantitatively. Both tracer diffusivities are proportional to
the vacancy concentration. (Here, one more approximation
is used that only one effective vacancy concentration is
treated, without distinguishing between sublattices in the
sulfide.) Take

D�m ¼ cV � Km; D�S ¼ cV � KS ð8Þ
where Km and KS can be treated as constants. Thus, Eq.
(7a) and (7b) is rearranged as

dre

dt
¼ Km � �

cV u
cm

@cm

@r

����
re

þ @cV

@r

����
re

 !
ð9aÞ

dri

dt
¼ KS �

cV u
cS

@cm

@r

����
re

þ @cV

@r

����
re

 !
ð9bÞ

Note that, in the above equations, the values of vacancy
concentration at the external and internal boundaries can
be very different, owing to the Gibbs–Thomson effect,
and the vacancy gradient (and the cross-terms in Eqs. (7)
and (10)) do not tend to zero. At the same time, the concen-
trations of the main components at the external and inter-
nal boundaries remain close to constant because of the
narrow homogeneity range of the sulfide.

Now, a steady-state approximation is used for both
components and vacancies inside the sulfide, which has
proved to be valid inside intermediate phases with a narrow
homogeneity range [16]. From the continuity equation, one
has
@cm

@t
� 0) div~J m � 0;

@cV

@t
¼ div~J V þ rV � div~J V

� 0) div~J V � 0 ð10Þ

In the last equation, the assumption about the absence
of effective vacancy sinks/sources inside the growing layer
of sulfide was used.

Writing down the fluxes and divergences in spherical
coordinates, one obtains

div~j � 0) 1

r2

@

@r
ðr2jrÞ � 0) r2jr � const

r2 � XjmðrÞ ¼ r2 �cV ðrÞu
@cm

@r
þ cmðrÞ

@cV

@r

� �
Km

¼ r2
e � XjmðreÞ ¼ r2

e �
dre

dt
� cm ð11Þ

r2 � XjSðrÞ ¼ r2 �cV ðrÞu
@cS

@r
þ cSðrÞ

@cV

@r

� �
KS

¼ r2
i � XjSðriÞ ¼ r2

i �
dri

dt
� cS ð12Þ

where Xjm ¼ cm
dre

dt and XjS ¼ cS
d i

dt are fluxes of the metal
and sulfur, respectively, and X is the volume per atom of
the sulfide.

Eqs. (11) and (12) can be treated as the set of two differen-
tial equations for two unknown functions cmðrÞ; cV ðrÞ (treat-
ing re and ri and their time derivatives as known parameters).
These equations are non-linear because the vacancy concen-
tration cV ðrÞ and thermodynamic factor uðrÞ in the coeffi-
cients cannot be treated as constants. However, Eqs. (11)
and (12) can be treated as the linear set of algebraic equations
for determining dcV

dr and cV ðrÞuðrÞ dcm
dr . By rearrangement, Eqs.

(11) and (12) are changed to

dcV
dr ¼

B2

r2

cV ðrÞuðrÞ dcm
dr ¼ �

B1

r2

(
ð13Þ

where B1 and B2 are expressed in terms of the boundary
velocities

B2 ¼ � cS
KS

r2
i

dri
dt �

cm
Km

r2
e

dre
dt

B1 ¼ cmcS � r2
e

Km

dre
dt �

r2
i

KS

dri
dt

� �
8<
: ð14Þ

The solutions of Eq. (13) give

cV ðrÞ ¼ � B2

r þ F

u dcm
dr ¼

B1

r2 �B2
r þFð Þ

8<
: ð15Þ

where F is the integration constant. In the first equation in
Eq. (15), the boundary conditions at re and ri, taking into
account the Gibbs–Thomson effect on the vacancy concen-
tration, will give

cV ðreÞ ¼ � B2

re
þ F ¼ cV 0

e�
2cX
kTre

cV ðriÞ ¼ � B2

ri
þ F ¼ cV 0

e
2cX
kTri

8<
: ð16Þ

Then, the second equation in Eq. (15) is integrated over
the radius from the inner boundary to the outer one, giving
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Z re

ri

u
dcm

dr
dr ¼

Z re

ri

B1

r2 � B2

r þ F
� � dr ð17Þ

The integration of the right-hand side of Eq. (17) by substi-
tuting Eq. (16) gives

B1

B2

Z re

ri

d � B2

r þ F
� �
� B2

r þ F
� � ¼ B1

B2

Z cV ðreÞ

cV ðriÞ

dcV

cV
¼ B1

B2

� ln
cV ðreÞ
cV ðriÞ

� �

¼ �B1

B2

2cX
kT

1

re
þ 1

ri

� �
ð18Þ

For the integration of the left-hand side of Eq. (17), tak-
ing into account that the thermodynamic factor
u ¼ cmcS

kT
@2g
@c2

m
, and that the homogeneity interval is very nar-

row (concentrations are almost constant within the sulfide
layer, but the derivatives of g are very far from being con-
stant), one obtainsZ re

ri

u
dcm

dr
dr ¼

Z re

ri

cmcS

kT
@2g
@c2

m

dcm

dr
dr ¼ �cm�cS

kT

Z cmðreÞ

cmðriÞ

@2g
@c2

m

dcm

¼ �cm�cS

kT
� @g
@cm

����
re

� @g
@cm

����
ri

 !
ð19Þ

It is well known for the case of planar layer growth that,
for the growth of a single intermediate phase, the difference
in the right and left derivatives would be proportional to
the driving force of the reaction

@g
@cm

����
re

� @g
@cm

����
ri

¼ @g
@cm

����
compound=nonmetal

1
� @g
@cm

����
compound=metal

1
¼� Dg

�cm�cS

ð20Þ
Yet, in the present case, one should take into account

the influence of curvature not only on the vacancy concen-
tration, but also on the phase equilibrium at the curved
boundaries. At the external boundary, the sulfide is under
additional Laplace compression with additional energy
per atom 2cX

re
, so that, taking into account the common tan-

gent rule, one has

@g
@cm

����
re

¼ @g
@cm

����
compound=nonmetal

1
þ

2cX
re

cmðreÞ � 0

ffi @g
@cm

����
compound=nonmetal

1
þ 2cX

�cmre
ð21Þ

At the internal boundary, the sulfide shell is under
Laplace tension with negative additional energy per atom

� 2cX
ri

� �
, so that

@g
@cm

����
ri

¼ @g
@cm

����
compound=metal

1
þ

� 2cX
ri

cmðriÞ � 1

ffi @g
@cm

����
compound=metal

1
þ 2cX

�cSre
ð22Þ

Then, instead of Eq. (20), one obtains

@g
@cm

����
re

� @g
@cm

����
ri

¼ � Dg
�cm�cS

þ 2cX
�cmre
� 2cX

�cSri
ð23Þ
Substituting Eq. (23) into Eq. (19), one obtainsZ re

ri

u
dcm

dr
dr ¼ �cm�cS

kT
� @g
@cm

����
re

� @g
@cm

����
ri

 !

¼ �Dg
kT
þ 2cX

kT
�cS

re
� �cm

ri

� �
ð24Þ

It is interesting to note that the change in driving force
in Eq. (24) due to curvature effect can be negative as well
as positive, depending on the stoichiometry and on the
ratio of the external and internal radii.

Substituting Eqs. (24) and (18) into Eq. (17), one obtains

Dg
2cX
� �cS

re
þ �cm

ri
¼ B1

B2

� 1

re
þ 1

ri

� �
ð25Þ

After substituting B1 and B2 from Eq. (14) into Eq. (25)
and after excluding the time, one obtains (after simple but
long algebra) the main equation of this paper:

dre

dri
¼ � r2

i

r2
e

Km

KS

cS

cm

Dg
2cX� 1

re

Dg
2cXþ 1

ri

ð26Þ

The following non-dimensional parameters are used:
x ¼ ri

ro
; y ¼ re

ro
;G ¼ 2cX

Dgro
, where ro is the initial radius of

the nanoparticle. The ‘‘G parameter” G, together with
the ratio of mobilities Km

KS
¼ D�m

D�S
¼ Dm

DS
ðDmðSÞ ¼ D�mðSÞuÞ are

the two major parameters of the model. Eq. (26) can then
be represented in the following form:

dy
dx
¼ � x3

y3

D�m
D�S

1� cm

cm

y � G
xþ G

ð27Þ

This equation differs from a similar equation by Alivisa-
tos et al. [8] by the last term containing G – 0 (responsible
for the Laplace pressure and the Gibbs–Thomson effect for
both vacancies and main components). When both radii re

and ri are large re; ri � 2cX
Dg ;G� 1

� �
, the equations become

similar.
Eq. (29) can be easily integrated but gives, as a result, the

transcendent interrelation between y and x. It can be solved
numerically by the finite difference method. The governing
parameters are: D 	 D�m

D�S
; cm and G. The equation has been

solved with the ‘‘initial” condition x ¼ 1; y ¼ 1þ e. Calcula-
tions were made in two cases: (1) when all pure metal (core)
was consumed by reaction

cm � ðy3 � x3ÞP 1 ð28Þ
and (2) when the inner radius of the sulfide shell became
equal to the radius of the remaining metallic core (the void
in the hollow shell between the compound shell and the
remaining metallic core with connecting bridges shrinks
prior to the end of the reaction):

x3
6

r3
core

r3
0

¼ 1� cm � ðy3 � x3Þ ð29Þ

It is evident from Eq. (27) that, in the case G > 1, nano-
shell formation is impossible (taking into account that x

and y start from almost 1). This means that, in very small



Fig. 4. Dependence of resulting reduced void radius xf ¼ rfinal
i
ro

on the G
parameter G ¼ 2cX

Dgro

� �
at D 	 D�m

D�S
¼ 10; cm ¼ cS ¼ 0:5.

3372 A.M. Gusak, K.N. Tu / Acta Materialia 57 (2009) 3367–3373
particles, ro <
2cX
Dg , the reaction with void formation is

impossible. It is interesting that this critical condition coin-
cides with the critical radius for nucleation of a new phase.

3. Applications of kinetic analysis

Below are presented some results for various parameters
in Eq. (27). A characteristic solution of Eq. (27) is repre-
sented in Fig. 3. Here the reduced inner radius x was decre-
mented uniformly and arbitrarily, the reduced external
radius y was calculated by numerical integration of Eq.
(27), and the reduced radius z ¼ rcore=r0 of the remaining
core was calculated according to conservation of matter
(neglecting the difference in atomic volumes in the com-
pound and the metal): z ¼ ð1� cm � ðy3 � x3ÞÞ1=3. Calcula-
tions were stopped when the core or void disappeared
ðz ¼ 0 or x ¼ zÞ.

According to the analysis by Alivisatos et al. [8], the
resulting radius of the final void is determined only by
the ratio of diffusivities and by the stoichiometry of the
compound. (Ideally, if only metallic atoms migrate, the
final void radius should be just equal to the initial radius
of the metallic particle.) But, according to the present
model, the resulting ratio of void radius to initial particle
size depends on the initial particle size via the G factor.
Indeed, according to the present results, the smaller the ini-
tial radius and the larger factor G, the lower will be the
ratio of final void size to initial particle size, as shown in
Fig. 4. Thus, if the initial radius is less than some critical
one, voids cannot be formed at all.
Fig. 3. Evolution of the reduced external radius y ¼ re
ro

of a compound
nanoshell (solid line) and reduced radius z ¼ rcore=r0 of the remaining
metallic core (chain line) with decreasing reduced inner radius of the
nanoshell x ¼ ri

ro
(dashed line). The moment of disappearance of the core

corresponds to the final radius of the void (end of chain line).
And what then? In this case, owing to the large vacancy
gradient, the inner radius converges inside faster than the
radius of the remaining metallic core, and abolishes the
void. In Fig. 5, the region of parameters G and D

G ¼ 2cX
Dgro

;D 	 D�m
D�S

� �
is divided into two subregions (results

of numerical calculations of y(x) with various parameters
of G and D). For the left and upper subregions, the forma-
Fig. 5. Dependence G(D) dividing two regimes: left and up, hollow nano-
shell formation impossible. Solid line, approximate analytical criterion

G >
ðD�m=D�S Þ�1

ðD�m=D�S Þþ1
(Eq. (6) at cS ¼ cm ¼ 1=2). Points, numerical criterion

obtained by solution of Eq. (27) with condition (29).
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tion of a hollow nanoshell is forbidden. This criterion
appears to be relatively close to the approximate analytical
criterion in Eq. (6), as demonstrated in Fig. 5.

If necessary, one can also calculate the absolute rate of
void formation in real time. Indeed, one can deduce two
expressions for parameter B2. First, from the set of Eqs.
(16), one obtains

B2 ¼ �cV 0

e
2cX
kTri � e�

2cX
kTre

1
ri
� 1

re

ð30Þ

Second, from Eqs. (14) and (26), one obtains:

B2 ¼ �
cS

KS
r2

i

dri

dt
� cm

Km
r2

e

dre

dt

¼ � cS

KS
r2

i

dri

dt
� 1� ri

re

re
r0
� G

ri
r0
þ G

 !
ð31Þ

Equalizing (30) and (31) gives

dri

dt
¼ �KScV 0

cS

exp 2cX
kTri

� �
� exp � 2cX

kTre

� �
r2

i
1
ri
� 1

re

� �
1� ri

re

re=r0�G
ri=r0þG

� � ð32Þ

Combining Eqs. (26), (27) with Eq. (32) gives the full descrip-
tion of the kinetics in real time. A typical result of solving Eq.
(32) together with the Eq. (27) is shown in Fig. 6.
Fig. 6. Dependence of reduced external ðy ¼ re=r0Þ, internal radii
ðx ¼ ri=r0Þ of the nanoshell and remaining core radius ðz ¼ rcore=r0 ¼
ð1� cm � ðy3 � x3ÞÞ1=3Þ on non-dimensional time tnd ¼

D�S
r2

0

t, calculated

according to Eq. (32). Case D 	 D�m
D�S
¼ 10; cm ¼ cS ¼ 0:5, 2cX

kTr0
¼ 1.
4. Conclusion

The formation of a hollow nanoshell was analyzed by
three competing factors: (1) growth of the compound phase
owing to the reaction and tendency for vacancies to go
inside (due to difference in diffusivities); (2) shrinking of
the shell owing to the vacancy gradient between the inner
and outer boundaries (the Gibbs–Thomson effect); and
(3) change in the driving force by Laplace tension at the
inner boundary and Laplace compression at the external
boundary. The second factor should win for very small par-
ticles. The critical value for the initial radius is very similar
to the Gibbs nucleation theory, that is rcr

0 ¼ 2cX
Dg . Nucleation

and phase competition (in case of two phase sequential for-
mation) of the spherical particles will be considered else-
where in the lines of [17].
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