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Integrated interdiffusion coefficient, introduced by Carl Wagner in 1969, is
revisited. First, it is applied for the whole diffusion zone, consisting of solid
solutions and/or layers of intermediate compounds. We demonstrate, for the
first time, that the Wagner coefficient satisfies the simple additive rule: the
total squared inter-penetration width is proportional just to the sum of all
Wagner coefficients of all intermediate phases of the system. Second, we
check the applicability of Wagner coefficients in the atomistic-scale model-
ling of reactive diffusion. Checking is done for the growth of intermediate
compound AB with BCC lattice.

Key words: diffusion, reaction, Wagner diffusion coefficient, parabolic
Boltzmann—Matano substitution, stochastic kinetic mean field method.

B nmamiii craTTi 3aHOBO aHANIByeThCA iHTerpalbHU KoedilieHT B3aeMHOI qu-
dysii, BBegenuit Kapaom Baruepowm e y 1969 pori. ITo-nepire, BiH 3acToco-
BYETBHCS OJIs Bciel mudysiiiHol 30HU, KA CKJIANAETHCS 3 TBEPAUX PO3UUHIB
Ta/abo mapiB IpoOMisKHUX CIOJyK. Mu BIlepilie MOKa3yeMo, 110 KoedilieHT
Baruepa 3a70BOJIbHSIE TPOCTOMY AAUTUBHOMY IIPABUJIY: KBaApaT IIMTUPUHU B3a-
€MOIIPOHMKHEHHS ITPONOPI[IMHUUA TPOCTO cyMi Bcix KoedimienTiB Barmepa
Bcix mpomiskHUX (has cucremu. Ilo-apyre, Mu mepeBipseMO 3aCTOCOBHICTDH KO-
edimientie Baruepa npu MozeoBaHHI peakIiiiHoi augysii Ha aToMHOMY Ma-
cmrabi. IlepeBipka npoBoguThCs nyis pocty npomiskHoi pasu AB 3 OIIK pemri-
TKOIO.

Kuarouogsi caosa: qudysis, peaxiris, xoedimient gudysii Baruepa, mapabosriu-
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Ha migcramoBkKa Boabnmanma—MaTaHo, CTOXaCTUUYHUN MeTOJ KiHETHYHOTO ce-
PeqHbOTO TMOJA.

B nmaHHO# cTaThe aHaIM3UPYETCA WHTETPAJBHBIA KO3((PUIIMEeHT B3aWMHOMN
nuddysun, Koropslii 6611 BBegeH Kapsom Baruepom emié B 1969 roay. Bo-
IIEPBBIX, OH IPUMeHsAeTCA KO Bcell quddysroHHON 30He, KOTOPasd COCTOUT U3
TBEPIBIX PACTBOPOB 1 /MJIU CJIOEB IIPOMEKYTOUHBIX cCOefuHEeHMIT. MBI BIIEpBBIE
MMOKa3bIBaeM, uTo Ko puiiueHT Baruepa yaoBIeTBOPAET IIPOCTOMY aAAUTUB-
HOMY NIpaBUJY: KBaJApaT IIUPUHBI B3aMMOIPOHUKHOBEHUSA ITPOIOPIIMOHAJIEH
IIPOCTO cyMMe Bcex Koad@uiineHTOB BarHepa Bcex IIPOMEKYTOUYHBIX (a3 cu-
cTeMbl. BO-BTOPBIX, MBI IIPOBEPAEM IIPUMEHUMOCTL KoadhdumueaToB Baruepa
Py MOJEJMPOBAHUU peakIMoHHON aud@ysum B aToMHOM Mmaciiatabe. IIpo-
BepKa IIPOU3BOAUTCA AJA pocTa mpomMe:kyTouHoi dasbl AB ¢ OITK peréTkoii.

Kuarouessie caoBa: quddysusd, peaknusa, koaddunuent suddysun Baruepa,
napaboJyinuecKkas moAcTaHOBKA BoabiMama—MaTaHo, CTOXACTUUECKUII METO[,
KMHETUYECKOI'0 CPeTHero moJs.

(Received February 20,2019 )

1.INTRODUCTION

Joining of two materials by interdiffusion or by reactive diffusion is a
complicated process involving diffusion, lattice flow, stress genera-
tion, and relaxation, chemical reactions etc. The main, integrated
characteristic of joining is a mean depth of mutual penetration. Below
we suggest the very simple measure of the joining magnitude and its
interrelation with Wagner integrated diffusion coefficients. Integrat-
ed diffusion coefficient was introduced by Carl Wagner, and is com-
monly used to simplify the kinetic description of the intermediate
phases with a narrow concentration range (compounds) growing in the
diffusion zone [1-6]. Very often, the concentration range of growing
compounds is so narrow that it is difficult to measure it, and even more
difficult to measure the concentration gradient inside the compound
layer. Formally speaking, one may encounter the mathematical uncer-
tainty of the type ‘infinity multiplied by zero’ in the formulation of the
first Fick’s law for the interdiffusion flux density across the growing
compound layer [7]:

oJ, =—pNe , DANy (1)
o0X AX

where Q—atomic volume, Ng—an atomic fraction of component B in

the binary alloy, D —average interdiffusion coefficient.

In the product BAN for the ‘line’ (or ‘point’) compound, the homo-
geneity range tends to zero, AN — 0 and average interdiffusivity
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tends to infinity,

Y

2
D =<,D; +N,D.) YalVe ag;>—>oo, 2)
kT ON?

N,N, o°g
KT ON?

per atom) tending to infinity at AN — 0 inversely proportionally to

AN. Luckily, in most cases, we are not interested in the details of con-
centration dependence inside the intermediate phases, but instead,
need just prediction of the growth kinetics. And this kinetics is deter-
mined by the Wagner integrated diffusion coefficient

due to thermodynamic factor ¢ = (g—Gibbs free energy

D,, (phase k) = j D(N)dN. (3)

AN (k)

Substituting Eq. (2) into integral (3) one easily gets[5]:

D,, (phase k) =
N(k)(l N(B)(N(k+1) - N(k-1)) (D,N, + D;N, )k )
" (N(k+D)-N(R)(N(k) - N(k - 1)) k,T

x Ag(k -1, E+1 - E).

Here Ag(k -1, E+1 — k) is a thermodynamic driving force of reaction
(-1, k+1 > k), N(k) is an average molar fraction of B in the k-th in-
termediate compound. Equation (4) has the traditional structure of the
product ‘mobility times driving force’.

In the following Section 2 the Wagner coefficient is generalized over
the total diffusion zone and related (by Matano—Boltzmann substitu-
tion) to the mean squared interpenetration depth. In Section 3 we mod-
ify the standard Matano analysis to get explicit expression for measur-
ing the Wagner diffusivity within single phase. In Section 4 we check
the applicability of Wagner coefficient to the mean-field atomistic-
scale model of phase growth (SKMF-Stochastic Kinetic Mean Field).
Namely, we model the reactive growth of B2 phase in the diffusion
couple A-B with b.c.c. lattice and account of two coordination shells.

2. INTEGRATED DIFFUSION COEFFICIENT
OVER THE WHOLE DIFFUSION ZONE

Let us consider the general case of the binary diffusion couple with the
step-wise initial profile based on the Heaviside step function:

N(t=0,X)=N, +(N, - N,)o(X - X,,), (5)
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0, X<X,,

X~ Xon) {1, X>X,.
Here X is a coordinate of Matano plane (initial contact plane in the
laboratory reference frame). Interdiffusion coefficient can be one con-
tinuous function of composition (full solubility) or several step func-
tions with zero gaps between them (limited solubility and possibly the
intermediate phases). It is a well-known trick to prescribe zero inter-
diffusivity to the two-phase regions. Indeed, any two mixtures of two
neighbouring phases in mutual equilibrium with different average
compositions have the same chemical potential of any species in both
phases and therefore, zero flux. Under such conditions one expect the
concentration profile to be monotonic, and satisfy the parabolic
Boltzmann—Matano substitution:

a_Nzi f)(N)a_N ,
ot o0X 0X

(6)
N, X) = N(é — ﬂ} = _lgd_N — i(ﬁ(N)ﬂ].

Jt 2°dE dg deg

Now let us multiply both sides of Eq. (6) by § and integrate over whole
couple length (formally infinite) corresponding to initial concentra-
tion range (N1, Ng):

1% ,dN . % d(z  dN
‘E,[f d_gdé_[oéda(D(N) dglda. (7)

Elementary transformation of both sides gives:

o)

1%, < dN

—§Nj SN = D)~

- ®)
=0- j D(N)dN = -D,,(N,,N,).

Coming back to time and space parameters ¢, X, one gets the following
parabolic law for the squared width of whole diffusion zone:

2DW(NL,NR)t

<(X-X,)>=
( M) NR_NL

1 f(X—XM)szz , 9)

NR_NL .

NR
where D, (N,,N;) = I D(N)dN —generalized Wagner diffusion coef-
Ny
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ficient over the total couple. In particular case of the couple A—B with
n intermediate compounds and limited solutions of Bin A (o) and A in
B (B) one gets:

< (AX)? >=2 j D(N)dN+Z j Dk(N)dN+jD(N)dN t. (10)

k=1 (AN (k)) Ny

The just obtained new equations (9), (10) seem to be physically clear,
but, to the best of our knowledge, they had not been published. These
equations can be interpreted as a kind of ‘addition rule’ or ‘superposi-
tion rule’ for mean squared interdiffusion depth: the inputs of all in-
termediate phases into the mean squared interdiffusion depth are just
added. In its turn, the mean squared interdiffusion depth seems to be
the natural measure of joining between two materials. Of course, these
conclusions are valid only for the diffusion-controlled, parabolic stage
of inter- and reactive diffusion.

3. MODIFICATION OF MATANO SCHEME FOR DIRECT
CALCULATION OF THE WAGNER DIFFUSIVITY OVER
SINGLE PHASE

Let us consider the diffusion couple composed of two samples of the
same intermediate phase but with compositions N, Nr corresponding
to the left and right margins of the homogeneity concentration range
of this very phase. Interdiffusion in such couple leads to some concen-
tration profile and to well-known Matano expression for the local dif-
fusivity:

1
2t(dN/d ETIE. j( x,, JAN, x,, NN j xdN. (11)

L N,

D(N) =

Now we integrate (11) over the concentration range and get the direct
Matano expression for Wagner diffusivity:

R N(x)

D, = j D(N)dN =— j dx j ~x(N")}dN". (12)

For the array of atomic planes with mean-field concentrations C[i] it
translates into following algorithm:

x[i + 1] — x[i] = dx,
iM = 3 i(NTi + 1] - NID/(N, - N,), (13)

i=iL
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4. CHECK BY COMPUTER EXPERIMENT: COMPARISON OF TWO
WAYS OF EVALUATION OF THE WAGNER COEFFICIENT FOR
THE GROWTH OF B2-PHASE LAYER IN THE DIFFUSION COUPLE

To illustrate and check the above-mentioned results, we will use atom-
istic Kinetic Mean Field (KMF) method for the modelling of atomic mi-
gration and diffusion-controlled phase transformations on the rigid
lattice, suggested by George Martin [8], applied to strongly asymmet-
ric thin-film couples in [9—11] and generalized to 3D in [12]. It was de-
veloped to include noise, for modelling nucleation and other processes
related to overcoming the nucleation barriers [12—15]. The generalized
version of KMF was called SKMF (Stochastic Kinetic Mean Field). This
method seems to be most effective for the coarsened space and time
scales, intermediate between phenomenological method (microns and
larger scale) and Kinetic Monte Carlo (first of all, nanoscale). Contrary
to Monte Carlo, SKMF cannot predict, say, the correlation factors for
vacancy diffusion, but, on the other hand, it enables the atomistic de-
scription of reactive phase layer growth for tens of nanometres much
easier and faster than by MC. We will see it just now. Let us consider
the ordered B2 phase layer formation in the b.c.c. diffusion couple A—
B. In the mean-field approximation with rigid lattice, the ordering of
B2 structure is a second-order phase transition. In such case, the in-
terdiffusion cannot provide the formation and growth of the ordered
layer with almost constant composition (concentration plateau). On the
other hand, typical technologically important examples of B2 phases,
like NiAl, CoAl, FeAl, AuZn, CuZn etc. are the very distinct interme-
diate phases (compounds), separated from neighbouring phases by
quite measurable concentration gaps. To make the phase diagram of
our model b.c.c.-system more realistic, we use (everywhere below) the
approximation of interactions in two coordination spheres (Z1=38,
72 =6).

For simulation we chose the following parameters. Temperature:
750 K. Interaction energies: V), =Vp, =-107%"J, V). =-3,9-107%J,
Vi =Va =-8,76-107%J, V3 =-2-107%'J.

4.1. Phase Diagram (Equilibrium Concentrations) Construction
by the Diffusion Couple Method

First of all, we use KMF-equations without noise [8, 12] for determin-
ing the equilibrium concentrations
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dNL- _ 4 N 1 N Fmean-field N 1 N Fmean»field 14
dt __‘21[ (1= j) i,j - j( -N)) jhi ]’ (14)
j=

where

e—f,,»/(kBT). (15)

mean-field __
re =T,

Energies are calculated in the middle field approximation for the two
coordination spheres:

z'=12 z'=12 Z"=6
E, =M -V) Y C+M" +V) Y C, +M"-V")> C +
=1 n=1 =1
2 (16)

+HM"+VH > C,,

n=1

VI(II) _ VI(II)

M =%—asymmetry parameters for two shells,

1 1 1 11 11 11
yla | —Ey+Z (Vap+Vep)+Z~ (Vap+Vee)
AA BB

kT

Vi =y —mixing energies, I';, = Je

(9 —attempts frequency, Eo—saddle-point energy, taken in KMF the
same for all jumps).

We construct diffusion couples A—AB and AB—B and simulate dif-
fusion until full equilibrium meaning stationary concentration steps
(Fig. 1).

Boundary concentrations (mole fraction of species A) obtained by dif-
fusion couples (A—AB, AB—B) at the temperature 750 K, after averaging
over each pair of atomic planes (100) are: 0.943, 0.585, 0.415, 0.057.

4.2. Phase Growth in A—B-Couple

Introduction of interactions within the second coordination shell
makes the ordering in stoichiometric AB alloy the first order trans-
formation needing the overcoming of the nucleation barrier. In princi-
ple, one can provide the nucleation by choosing initial condition with
sufficient extra free energy. Yet, more natural is to provide the possi-
bility of fluctuations. Therefore, everywhere below we introduce the
noise of local fluxes between neighbouring sites in the form of the
noise of jump frequencies and use SKMF instead of KMF method, with
the following main kinetic equations [13—-15]:

dN. 4 ‘

d_tl = —;[N ;L-N, )(I“;flfa“'fleld + 61“2‘}‘““”) - am
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_N] (1 _ Ni )(r;l?iean-field + SF?’?ng )]’
A
Jdt

Dt—non-dimensional time-step, A, =0.01 (see Figs. 2 and 3).

The squared thickness of the intermediate phase versus time, after
some time averaging, corresponds to the parabolic law (Fig. 4).

As known from the diffusion textbooks [2, 5, 7], the kinetics of sin-
gle IMC parabolic growth is described by the equation
2D

4 t ~8D, t(N,, . =1/2). (19)
NIMC(]‘ - NIMC) v e

Sl“i‘jng = J3(2random - 1), (13)

(AX)" =

Comparison of Eq. (19) with Fig. 4 (Ax*(m?) = 6.23-10"%(m?/s)t(s))
gives:

6.23-10" s m?
D,=—" """ ~7.8-10"%—, (20)
w
8 s
e 1 ‘I\I\Jlll\il\lli]\ll\l\l
| | 1l
|M\\‘I‘\‘\I\MI\H‘HIH |
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Fig. 1. Typical initial (a) and final (b) concentration profiles in the couple A—
AB, without noise.
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4.3 Finding of Wagner Diffusivity from the Computer Experiment
with Diffusion Couple within the Homogeneity Range of AB-Phase

Now we construct the diffusion couple 0.415-0.585 within the homo-
geneity range of AB-phase at 750 K. The typical profile after some
time of annealing and averaging over each two atomic planes (100) is
shown at Fig. 5.

Fig. 2. General picture of the AB phase formation in the couple A—B. Colour of
each site corresponds to local probability (atomic fraction) of sort A at this site.
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Fig. 3. Concentration profile along X-axis, obtained by averaging over Y and
Z. With additional averaging over each two planes (a), without averaging
over each two planes (oscillations mean sublattices) (b). We observe two layers
of the ordered phase due to the periodic boundary condition for the thin-film
system.
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Fig. 4. Growth of the AB phase over time.
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Fig. 5. Profile of the couple N.—Ng within the homogeneity range.

We calculate the Wagner interdiffusivity now from the interdiffu-
sion in this limited diffusion couple, according to Eq. (13). It gives
D,, =8.8-10" m?®/s, which is rather close to Eq. (20) obtained by al-
ternative method (kinetics of reactive growth).

5. SUMMARY

Thus, the concept of Wagner integrated diffusion coefficient is gener-
alized from the individual compounds to the whole diffusion zone of
the arbitrary diffusion couple. This generalized concept is applied to
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broad solid solutions (Eq. (9)) as well as to the sequence of compounds
with a narrow homogeneity range (Eq. (10)). Independently it can be
calculated for each intermediate phase by the modified Matano equa-
tion (13). Results are checked within atomistic SKMF model.
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