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Abstract
The necessity of reconsidering the nucleation theory for the case of the initial
stage of reactive diffusion is demonstrated. The existence of sharp concentration
gradients and huge diffusion fluxes in the nucleation region changes both the
thermodynamics and kinetics of nucleation as well as the very notions of
critical nucleus and incubation time. In particular, the incubation period for
intermediate phases depends on the diffusivity of the parent phase; nucleation
behaviour for the ‘total mixing mode’ can be non-monotonic; the result of
competition of different nucleation modes depends on the ratio of diffusivities
in the new and parent phases.

1. Introduction

Recent developments in the field of nanotechnologies has produced a new wave of interest
in the problem of nucleation of intermediate phases in binary and multicomponent alloys.
Nucleation appears to be a controlling stage for producing multicomponent metallic glasses
and bulk nanocrystalline materials [1–4]. Thermodynamics and kinetics of nucleation in
such systems are now being intensively developed. Much less is known about nucleation in
heterogeneous systems with sharp concentration gradients, for example, multilayers. Most
important here is an initial stage of reactive diffusion, e.g. solid state reactions between two
materials controlled by interdiffusion. First experimental evidence of the decisive role of
nucleation was given by the solid state amorphizing reactions (SSARs), which take place only
under condition of sufficient defect density in the diffusion zone (sufficient density of nucleation
sites for metastable amorphous intermediate phase [5–7]). Usually the initial stage of reactive
diffusion in binary diffusion couples (or thin films or multilayers) can proceed via different
evolution paths, e.g. different sequences of phase formation. Evidently, the choice of evolution
path is made first of all at the nucleation stage [7]. Moreover, for ternary and multicomponent
diffusion couples an evolution path can be non-unique even at the late stages [8, 9]. In this
case the choice of diffusion path should be determined by the hierarchy of incubation periods
of intermediate phases at interfaces and in the two-phase regions.
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In all the above-mentioned processes the nucleation proceeds in the vicinity of initial
interfaces, e.g. under conditions of sharp concentration gradient and huge diffusion fluxes
across the newborn particles of intermediate phases. Recent investigations of solid state
reactions in multilayers demonstrated that the nucleation stage can be observed directly as the
first maximum of heat flux in DSC experiments [10–13]. Measurement of Avrami exponents for
different parts of this nucleation maximum gives information about the rates of nucleation and
lateral growth of intermediate phases. All this makes necessary the development of quantitative
theory of nucleation kinetics in the concentration gradient.

So far we have a rigorous theory of the phase layer growth during reactive diffusion only
for the case when each intermediate phase exists in the form of a continuous planar layer. At
this stage a diffusion flux across each layer is determined by the gradient of chemical potential
and by the rate of ‘reactions’ at the moving interfaces [14–16]. Yet, we still do not have any
good recipe for calculation of the period of initial layer formation. In general, this time should
include four terms: (a) time of ‘concentration preparation’, e.g. time for formation of the space
region with compositions favourable for the intermediate phase; (b) time to reach the critical
size by the growing nuclei (traditional incubation time); (c) time of diffusional suppression by
neighbouring phases; (d) time of lateral growth until formation of continuous layers.

In this paper we will concentrate on the items (a) and (c). In section 2 we will present
a sketch of a ‘naive’ theory of phase competition which takes into account the diffusional
interaction between the critical nuclei of all intermediate phases in the diffusion zone. The
above-mentioned theory is based on assumption of nonconstrained formation of critical nuclei.
In section 3 we show that this assumption may be not valid in many cases, especially in
the case of nucleation during SSAR. The presence of a concentration gradient changes the
thermodynamics of nucleation, and this change is not reduced to Cahn–Hilliard gradient terms.
The dependence of the Gibbs free energy of nucleus formation on the number of atoms in the
newborn nucleus �G(N) appears to be determined by the value of concentration gradient at
the nucleation place and by the ‘mode of nucleation’. We consider three possible nucleation
modes—polymorphic, transversal and total mixing modes. During the last decade the present
authors and P Desre [17–23] calculated the dependences �G(N,∇C) for each mode. Here
only the main results of these calculations are presented. Of course, different thermodynamics
of nucleation causes different kinetics. In section 4 a modified Fokker–Planck (F–P) equation
for nucleus size distribution f (N, t) is solved for these modes in the case where they operate
separately. Numeric solution of the F–P equation with a time-dependent driving force gives
information about the incubation period as a function of ratio of diffusivities in the parent and
daughter phases. In section 5 we try to take into account that several nucleation modes can,
in principle, operate simultaneously. Thus, interference and competition of nucleation modes
should take place.

We are not confident enough to pretend to creation of a new nucleation theory. The aim of
this paper is to demonstrate that the basic notions of standard nucleation theory, (i) the notion
of a critical nucleus, (ii) the physical sense of incubation period and (iii) the interrelation
between thermodynamics and kinetics of nucleation, should be reconsidered in the case of
reactive diffusion.

2. Naive theory of phase competition

2.1. ‘Critical nucleus’—what does it mean for reactive diffusion?

The very notion of the critical nucleus loses its simple interpretation for the case of nucleation
in the diffusion zone. Usually the two following alternative definitions of a critical nucleus
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are considered as equivalent for nucleation during decomposition of an initially uniform
supersaturated solid solution:

(a) maximum (saddle-point) of the Gibbs free energy dependence �G(N) on the size of the
embryo/nucleus;

(b) particles for which probability of growth is equal to probability of dissolution so that

�ν(Ncr) ≡ ν+(Ncr) − ν−(Ncr) = 0 (1)

where ν+ is a frequency of joining one structure unit and ν− is a frequency of ‘departure’
of this unit.

In the standard Fokker–Planck approach to nucleation one uses the relation

�ν = −ν+ + ν−
2

1



∂�G

∂N
. (2)

Therefore zero derivative ∂�G/∂N means zero ‘driving force’ so that definitions (a) and
(b) coincide.

The case of nucleation during reactive diffusion situation is not so simple.
Let us consider an A/B couple where phases 1 and 2 can be, in principle, formed.

 

J(1) 

A 1 
2

2

x 

J(2) 

B 

Figure 1. Attempt at phase 2 nucleation at 1/B interface.

Lets, say, phase 2 with average composition C2 (C2 is a molar fraction of component B)
and narrow homogeneity range �C2 � 1 try to nucleate at the moving interface between the
growing phase (phase 1) and material B (see figure 1). Even if the newborn particle of phase 2
is overcritical in the standard sense (N > Ncr , ∂�G/∂N < 0), this does not necessarily mean
that phase 2 will succeed in growing.

Indeed, the particle of phase 2 from the very beginning appears in the fields of chemical
potential gradients and of diffusion fluxes J (i). These fluxes change abruptly at the interfaces
1–2 and 2–B: w(1)J (1) = −D1�C1/�x1, w(2)J (2) = −D2�C2/�x2, w(β)J (β) ≈ 0, where w

is a volume per atom. Each sudden change of flux generates movement of the corresponding
interface, with some velocity u according to the conservation law. If one neglects the change
of molar volumes, then

(C2 − C1)u12 = D1�C1

�x1
− D2�C2

�x2

(1 − C2)u2B = D2�C2

�x2
− 0

(3)

(we consider solubility of A in B as negligible, so that Cβ ≈ 1, J (β) ≈ 0; we consider
interfaces 1–2 and 2–B as nearly planar, so that nucleus 2 is platelike, see [19, 20]).

Evidently, the phase 2 width should change with the following rate (if one neglects the
random joining/departures):

d�x2

dt
= u2B − u12 = 1

C2 − C1

(
−D1�C1

�x1
+

1 − C1

1 − C2

D2�C2

�x2

)
. (4)
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If phase 2 is a ‘critical’ nucleus with thickness l(2)cr , if diffusivity of phase 1 is much larger
than that of phase 2, D1�C1 � D2�C2, and if the phase 1 layer is not too wide,

�x < �x∗
1 = 1 − C2

1 − C1

D1�C1

D2�C2
l(2)cr (5)

then, according to equations (4) and (5), (d�x2/dt)|lcr < 0.
This means that under condition (5) the overcritical nuclei of phase 2 are not able to grow:

they are ‘consumed’ by neighbouring ‘shark phase’ (‘vampire phase’) 1 with larger diffusivity.
Such unsuccessful attempts at phase 2 nucleation will be repeated during the ‘incubation

period’

τ = C1(1 − C1)

2D1�C1
(�x∗

1 )
2 = C1(1 − C2)

2

2(1 − C1)

D1�C1

(D2�C2)2
l22 . (6)

(In this equation we have used the parabolic growth law for single phase 1 in the absence
of a phase 2 layer.)

Thus, we have an alternative:

(1) overcritical nucleus size is not a guarantee of growth, or
(2) condition

∂�G

∂N
= 0 (7)

is not a definition of the critical nucleus.

2.2. Diffusional phase competition—kinetic constraints

Here we consider the simplest model of unlimited nucleation of the intermediate phases
[24, 25]. According to this model, from the very beginning of contact the critical nuclei
of all intermediate phases appear due to heterophase fluctuations. In this model it makes no
difference which of them appear first. We can imagine the layers of nuclei with critical width
as an initial condition.

Then the competition begins. As was mentioned in the previous section, every nucleus
appears between the neighbouring phases with different chemical potentials. Therefore the
diffusion fluxes arise via the nuclei. These fluxes change abruptly at every interphase boundary
generating its movement. Due to this movement some phase nuclei can grow and others
decrease, becoming subcritical.

To obtain a criterion of growth/suppresion, consider simple binary diffusion couple A–B
with two intermediate phases 1, 2.

To determine which of the phases will grow first, one should consider diffusional
interaction between two initial layers of critical nuclei of both phases. One can easily check
that in the approximation of constant fluxes [26]

d�x1

dt

∣∣∣∣
l1

= 1

C2 − C1

(
C2

C1

D1�C1

l1
− D2�C2

l2

)
(8)

d�x2

dt

∣∣∣∣
l2

= 1

C2 − C1

(
−D1�C1

l1
+

1 − C1

1 − C2

D2�C2

l2

)
. (9)

Here we have three possibilities (see figure 2) depending on the ratio

r = D1�C1

D2�C2

l2

l1
(10)
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(1) r < C1/C2 ⇒ (d�x1/dt)|l1 < 0; (d�x2/dt)|l2 > 0—phase 2 (‘vampire’) starts growing,
‘eating’ the nuclei of phase 1;

(2) C1/C2 < r < (1 − C1)/(1 − C2) ⇒ (d�x1/dt)|l1 > 0; (d�x2/dt)|l2 > 0—both phases
grow from the moment of nucleation;

(3) r > (1−C1)/(1−C2)—phase 1 (‘vampire’) starts growing, ‘eating’ the nuclei of phase 2.

Such a simple approach is easily generalized to an arbitrary number of intermediate phases
[24].

Figure 2. Suppression/growth criterion for two intermediate phases.

Obviously, the above-mentioned approach is too simplified since it does not take
into account the influence of concentration gradients on the nucleation barrier, e.g. the
thermodynamic constraints.

3. Thermodynamic constraints on nucleation

The nucleation barrier for intermediate phase formation in the diffusion zone should be
calculated taking into account the redistribution of components outside the newly born
nucleus. Strictly speaking, nucleation is a transition over the saddle-point of the Gibbs free
energy surface in the multidimensional phase space including the nucleus size and values
of concentration in each point (composition distribution). Sectioning of this surface by the
hyperplane of constant composition distribution gives a dependence �G(R) with a maximum.
The height of this maximum is different for different composition distributions. In many cases
the diffusion process in the parent phases (decreasing of the concentration gradient) makes the
height less and less. Thus, from a purely thermodynamic point of view, it is favourable for
the system to wait for homogenization (when the barrier is lower) and only then to nucleate.
The parent phase (or two adjacent phases) is metastable in relation to new phase formation,
but simultaneously it is (they are) unstable in respect to further interdiffusion. Therefore, at
fixed size and composition of the nucleus the optimal distribution for outside parent phase(s)
will be reached only after full homogenization. Obviously, the nucleus will not ‘wait’ for
this. This means that true minimisation of the Gibbs potential for nucleation during diffusion
is impossible. Therefore the problem of nucleation in an inhomogeneous system should be
solved under certain constraints, which are determined by kinetics of diffusion processes.
Depending on the type of constraint one has different nucleation modes. We can point out at
least three possible nucleation modes.

(a) Polymorphic mode [17, 19, 20, 23]. This is possible if the parent metastable phase
(for example, amorphous) can exist in the concentration range advantageous for a new
intermediate phase. (The role of parent phase can be played by the metastable solid
solution or previously formed amorphous layer.) At first the interdiffusion forms a
concentration profile in the parent phase overlapping the concentration interval where
the new intermediate phase has lower Gibbs potential (figure 3). Then the polymorphic
transformation in the limited region takes place forming the lattice of new phase at a
frozen concentration gradient. The driving force is denoted as �ga . The less sharp is the
concentration gradient (larger annealing time), the wider is the region profitable for the new
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Figure 3. Dependences g(C) and C(x) in the case of full mutual solubility in the metastable state
�ga,b,c—driving forces per atom of newborn nucleus for nucleation modes (a), (b) and (c).

phase—the more probable is nucleation. After nucleation the diffusion proceeds, and the
newly born nucleus interacts with parent phase due to a steplike change of diffusion fluxes
at its boundaries. In some cases (during solid state amorphizing reactions) amorphous
phase can form at the very beginning due to easy nucleation at, for example, triple grain
boundary junctions. Due to the comparatively big diffusivity in such a phase it can grow
fast playing the role of a parent metastable phase [7].

(b) Transversal mode [18, 21, 23]. This mode is possible both for cases shown in figures 3
and 4. In the case shown in figure 4, interdiffusion before formation of an i-phase nucleus
leads to ‘metaquasiequilibrium’ α–β with metastable concentration ranges (Cα, Cα′) and
(Cβ ′ , Cβ), unstable to decomposition into α + i and i + β. According to P Desre [18, 21],
during the nucleus formation in the concentration gradient (in x-directions) each thin slice
(x, x +dx) of this nucleus is formed via unlimited redistribution of components inside this
slice independently of other slices. Optimal concentration Cnew(x) in this nucleus slice
is determined by the concentration Cold(x) in the surrounding phase (for the same slice)
according to the rule of parallel tangents (not the joint tangent) (figure 3):

∂gnew

∂Cnew
= ∂gold

∂Cold
.
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Figure 4. Dependences g(C) and C(x) in the case when solubility is limited even in the metastable
state (g—Gibbs free energy per atom).

The driving force is denoted as �gb. To make the transversal mode real, diffusivity in
the parent phase(s) should be much larger than in the new phase (Dm � Di) since the
transversal redistribution in a thin infinite slice should proceed faster than the nucleus
growth.

(c) Total mixing (longitudinal) mode [22, 23]. This mode means nucleus formation only by
the cost of redistribution in the transformed region of the parent phase, the concentration
distribution outside nucleus being unchanged. The driving force is denoted as �gc. To
make this mode real, diffusivity in the forming phase should be much more than in the
parent phase (Di � Dm) since the redistribution in the newly formed nucleus should
proceed faster than the change of concentration gradient outside the nucleus.

Obviously, in the general case all these modes (and, maybe, some others) should operate
simultaneously. It is a problem of kinetics.

The general expression for the change of Gibbs free energy caused by nucleation of particle
with the arbitrary shape y(x) of the figure of rotation around the direction of concentration
gradient is as follows:

�G = n

∫ x=Rβ

x=−Ra

�g(Cold(x) → Cnew(x))πy(x)
2dx

+
∫ x=Rβ

x=−Rα

2σπy(x)

√
1 +

(
dy

dx

)2

dx − σαβSαβ + �Gelastic. (11)
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Here �g is a bulk driving force per atom corresponding to transformation of parent phase
with composition Cold(x) into new phase with composition Cnew(x). These compositions
coincide for the polymorphic mode; they are linked by the parallel tangent rule for the
transversal mode; they are determined by conservation of the substance inside the nucleus
for the total mixing mode. σ is a surface tension between new and parent phases, σαβ is
a surface tension between parent phases, Sαβ is an initial contact area disappearing during
nucleation, Rα + Rβ is a longitudinal size of the nucleus and �Gelastic is an elastic energy
due to misfit, calculated, for example, according to Nabarro’s approximation. The elastic term
will be neglected below—it was taken into account for the special case of spheroidal nuclei
in [27]. �G is a function of nucleus volume and a functional of nucleus shape. It depends
also on concentration gradient as a parameter. We determine the optimal shape for every
fixed volume and concentration gradient. In the case of polymorphic mode this was done for
arbitrary shape by solving the corresponding Euler–Lagrange equation that in our case is an
integro-differential equation [20]. The dependence of �G on volume has the following form:

�G(V ) = αV
2
3 − βV 1 + γ (∇C)2V

5
3 .

Coefficients α and β are the functionals of the shape function y(x): they are constant for
fixed shape. The factor γ in this expression is positive for polymorphic and transversal modes
and negative for total mixing mode.

The gradient term was introduced first in the case of a spherical embryo in [17] and in the
case of a cubic embryo in [18]. The detailed analysis of the first two modes, (a) and (b), was
made in [17–21] and for the third mode in [22].

If one takes the nucleus to be a parallelepiped 2h × 2h × 2r (2r is a longitudinal size),
then the free energy change for the formation of the nucleus (embryo) is given by:

�G = −n�gV + 8(σ1h
2 + 2σ2hr) + γ (∇c)2h2r3 (12)

where n is a number of atoms per unit volume, �g a maximal driving force of transformation
per atom, σ1, σ2 the energies per unit surface for two directions and V = 8h2r . Coefficient
γ depends on the nucleation mode [23]. If the free energy concentration dependences of the
metastable (parent) and new intermediate phases are approximated by parabolas, then

γ (a) = 4

3
n(α′ − α) γ (b) = 4

3
n
α

α′ (α
′ − α) γ (c) = −4

3
nα. (13)

Here α and α′ are the second derivatives of Gibbs free energy per atom with concentration
for the parent and new phases correspondently. Equation (12) is valid only if the nucleation
proceeds due to only one nucleation mode. It is very important to note that γ (c) is negative.
This means that, in contrast to the modes (a) and (b), when the increase of concentration
gradient leads to bigger nucleation barriers and even to prohibition of nucleation at sufficiently
sharp concentration gradient, the nucleation mode (c) corresponds to decrease of nucleation
barrier at increasing concentration gradient. In the cases (a) and (b) the shape of the embryo
becomes more and more pancake-like with growing volume. In contrast, in the case (c) the
shape should become more and more needle-like with growing volume.

Evidently, all these nucleation modes (and at least one more—taking into account diffusion
in the ∇c-direction outside the nucleus) should operate simultaneously in the real nucleation
process.

4. Fokker–Planck approach

The above-mentioned thermodynamic approach does not take into account that the nucleation
proceeds simultaneously with the evolution of concentration gradient in the parent phase.
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A more appropriate way to simulate the initial stage of reactive diffusion is to solve the
corresponding equation (in partial derivatives) for the distribution f of new phase particles in
the size space:

∂f (N, t)

∂t
= − ∂

∂N
(�ν f ) +

∂2

∂N2
(ν f ) = − ∂j

∂N
. (14)

Here f (N, t) is a number of new phase particles containing N atoms of species B (the
number of A atoms is approximately determined by stoichiometry) at time t , j (N, t) is the
flux density in the size space and �ν is determined by equation (2).

Since the process of nucleation proceeds in a sharp concentration gradient, an expression
for �G(N) contains an additional gradient term, proportional to (∇C)2N

5
3 . The value and

the sign of the factor at this gradient term depend on the nucleation mode. We will investigate
polymorphic and total mixing modes.

4.1. Kinetics of nucleation of polymorphic mode

In the case of the polymorphic mode the gradient term is positive (concentration gradient
hinders the nucleation). Under assumption of spherical nucleus shape the dependence of
Gibbs free energy on the number of atoms in the nucleus has the following form:

�G(N) = �gm N +

(
3

4πn

)2
3 g′′

10
(∇C)2N

5
3 +

(
3

4πn

)2
3

4πσN
2
3 . (15)

Here the nucleus is considered to be spherical, the nucleation mode to be polymorphic and g′′

is the second derivative of Gibbs free energy per atom on concentration for the new phase. If
the concentration gradient in the nucleation place changes according to a parabolic law

(∇C)2 = 1

4πDparent t
(16)

then a drift term in the F–P equation explicitly depends on time, which physically means the
lowering of the nucleation barrier due to interdiffusion in the parent phase(s).

It is convenient to use further the non-dimensional variables

τ ≡ νt α ≡ �gm

kT
< 0 β ≡ C3

g′′ν/kT
24πDparent

γ ≡ C3
8

3

πσ

kT

(17)

where C3 = (3/4πn)
2
3 .

Here ν is treated as approximately constant. Then

∂f (N, t)

∂τ
= ∂2f

∂N2
+

∂

∂N

(
f

(
α + β

N
2
3

τ
+

γ

N
1
3

))
. (18)

Numeric solution of this last equation has been obtained for fixed total number of
nucleation sites (heterogeneous nucleation):∫

f (N, t) dN = const. (19)

The evolution in time of the size distributionf (N) corresponds to evolution of the potential
field �G(N) but is shifted in time. For small annealing times, when the concentration gradient
remains sharp enough, the dependence �G(N) is monotonically increasing so that nucleation
is thermodynamically forbidden (figure 5).

In this period a distribution f (N) remains monotonously decreasing. After a certain
incubation thermodynamic ‘time’, when the concentration gradient in the parent phase becomes
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Figure 5. Dependence�G(N) for sharp ∇C (small annealing time) and low ∇C (longer annealing
time). τ = 50 (a), 100 (b), 150 (c). Dparent = 10−20 m s−2, �gm = −7.48 × 10−21 J,
g′′ = ∂2g/∂C2 = 7.77 × 10−19 J, n = 1029 m−3, T = 600 K, σ = 0.15 J m−2. The same data
were used for figures 7–9.

Figure 6. Evolution of size distribution for nuclei of intermediate phase. τ = 100 (a), 200 (b),
300 (c). Dparent = 10−20 m s−2, �gm = −7.48 × 10−21 J, g′′ = ∂2g/∂C2 = 7.77 × 10−19 J,
n = 1029 m−3, T = 600 K, σ = 0.15 J m−2.

less than the critical value, nucleation becomes thermodynamically possible (�G(N) non-
monotonic with a maximum corresponding to the nucleation barrier). Yet, a distribution
function f (N) reveals a maximum not at once, but after a certain ‘kinetic incubation period’
(figure 6).

We define an incubation time as a period of peak formation for size distribution f (N) (not
counting an initial peak at N = Nmin). Obviously, in dimensionless scale τ the incubation
time (τinc) should depend on the ratio of two kinetic parameters: ν and Dparent .

Dependences τinc(Dparent /ν) for different surface tensions are shown in figure 7.
To evaluate the realistic range of the ratio D/ν one should take into account that the

frequency ν can be estimated as ν ∼ N
2
3 Dboundary/λ

2, where Dboundary is the diffusivity of
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Figure 7. Dependence of dimensionless incubation time τinc = νtinc on the ratio D/ν for different
surface tensions: 0.09 (a), 0.10 (b) and 0.11(b) J m−2.

the interface between new and old phases, and the number of atoms in the nucleus and λ is
the characteristic length of random walk of an atom looking for a suitable place to join the
new phase. It is reasonable to suppose that Dboundary > Dparent and λ > a, where a is an
atomic distance. If N ∼ 30 and λ ∼ 10−10–10−8 m, then the ratio D/ν belongs to the interval
10−17–10−21 m2.

One can see that with growing diffusivity of parent phase a dimensionless incubation time
decreases to some asymptotic level.

It means that this level represents the time for nuclei growth even when gradient effect
does not hinder the nucleation. Then we may consider the difference τ − τmin as a time of
‘concentration preparation’.

Evidently, the transversal mode gives similar results since it corresponds to the same sign
of the gradient term.

4.2. Kinetics of nucleation via total mixing mode

For total mixing mode the gradient term (factor γ ) in equation (18) is negative—the
concentration gradient ∇C helps the nucleation process. The results of calculation for the total
mixing mode differ substantially from those for the polymorphic mode. First of all, nucleation
is never suppressed. Moreover, nucleation behaviour may well be oscillatory—for a certain
range of parameters the time evolution of new phase volume is non-monotonic (see figure 8).
Similar non-monotonic behaviour is observed as well for the number of smallest embryos (in
our case Nmin = 5) for the same thermodynamic parameters except surface tension (figure 9).

Why are the embryos generated intensively at the very first stage and than partially
dissolved? Our answer is the following: for the total mixing mode the gradient term helps
nucleation. At first the gradient is large, making the nucleation barrier low and the nucleation
process easy. With time the gradient decreases; the nucleation barrier and critical nucleus size
increase. Therefore, particles which had been generated earlier as overcritical and which did
not manage to reach the new critical size, find themselves to be subcritical and are dissolved.
In other words, if the growth rate of particles is less than the rate of critical size growth (due
to decreasing concentration gradient), these particles will be disintegrated.
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Figure 8. Time dependence of new phase volume in the case of the total mixing mode for
σ = 0.20 J m−2.

Figure 9. Time dependence of the number of smallest new phase embryos (Nmin = 5) for
heterogeneous nucleation via the total mixing mode for σ = 0.15 J m−2.

We had observed the non-monotonic behaviour of new phase formation during
interdiffusion by Monte Carlo simulations both for second-order and first-order phase
transitions in the concentration gradient [28, 29].

5. Competition of intermediate phase nucleation modes in the concentration gradient

5.1. General remarks

As we have just seen, nucleation of intermediate phase during reactive diffusion can proceed
via different ‘modes’, each being characterized by its own nucleation barrier, its own frequency
factor and own shape/volume dependence. We restrict ourselves to a special shape, a
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parallelepiped, leaving the only free shape parameter ϕ = h/r , where 2h, 2r are the nucleus
sizes in transversal and longitudinal directions.

Every mode has its own velocity determined by diffusivities and embryo shape. Since
the embryo growth is a random process, generated by fluctuations, it should be described by
the size distribution function f (N, ϕ|t), where N is a number of atoms, say, of the B species
in the embryo. Up to now we do not know for sure the mechanism of the smallest embryo
formation, containing some small number of atoms, N0. It can be formed, for example, by
some kind of cooperative mechanism. Further growth of this embryo is supposed to proceed
by a ‘one by one’ mechanism: atoms join the embryo one by one via the different kinds of
diffusion process. Here we will consider in detail the interference of only two modes of this
‘one by one’ mechanism—(b) and (c).

We will suppose that at every stage of the embryo evolution of the shape is somehow
optimized for every fixed N , so that ϕ = ϕ(N), and f (N, ϕ) = f (N, ϕ(N)) = f (N). The
method of such optimisation, taking the kinetic factors into account, will be considered in
section 5.3. The distribution function f (N |t) is determined by the Fokker–Planck equation
that is constructed and analysed in section 5.2. In this equation the ‘jump frequency’ in the
size space is taken as a superposition of frequencies for two modes—(b) and (c). To obtain an
effective nucleation barrier, one does not need to solve the F–P equation in the general case. It
is enough to analyse the stationary case, ∂f/∂t = 0. A minimum of the function f (N) for this
case (if it exists!) corresponds to the effective nucleation barrier and to the critical number Ncr

of atoms A (and the corresponding critical volume Vcr of the intermediate phase). It depends
on the concentration gradient and on the ratio of diffusivities in the new and parent phases. In
section 5.4 the general scheme and numeric calculations for non-dimensional parameters are
presented.

5.2. Fokker–Planck equation for the interfering nucleation modes

Further we neglect the (a) mode of nucleation. Then the time evolution of the size distribution
function f (N |t) is determined by the superposition of frequencies of the (b) (transversal) and
(c) (total mixing) modes.

∂f

∂t
= ν+(N − 1)f (N − 1) + ν−(N + 1)f (N + 1) − [ν+(N) + ν−(N)]f (N).

(20)

Here ν+/−(N) is a frequency (probability per unit time) of one B atom joining (leaving) the
embryo lattice (in combination with q A atoms needed to preserve the stoichiometry AqB1).
In the case of two operating modes

ν+/−(N) = ν
(b)
+/−(N) + ν

(c)
+/−(N). (21)

In fact, frequencies, as well as distribution function f , depend on shape as well. An
equation for determining the dependence ϕ(N) for most probable shapes will be obtained
in section 5.3. An expansion of the function f into Taylor series around N transforms
equation (20) into the usual Fokker–Planck equation (14) where the ‘flux density’ j in the
size space consists of the drift term (ν+ − ν−)f and the ‘diffusional’, purely stochastic term
−(∂/∂N))([(ν+ + ν−)/2]f ), which makes the very process of nucleation possible.

Consider now the explicit form of ν(b)+/− and ν
(−)
+/−. Each of the frequencies is a product of

‘kinetic’ (pre-exponential) and ‘thermodynamic’ (Boltzmann) factors. The Boltzmann factor
is a probability of climbing on the potential barrier shown in figure 10. For the (c) mode (total
mixing inside the newly formed nucleus) the pre-exponential factor is an inverse time τ−1 of
the process of joining (leaving) the embryo by one B atom, multiplied by the number of atoms
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∆G(N↑) 
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Figure 10. Schematic ‘microscopic’ dependence of the Gibbs free energy on the number of A atoms
in the embryo of intermediate phase.

(2h)2/s0 which can try to fulfil the procedure of joining (s0 is the area per atom). In the case
when the B atoms are much faster than A atoms,

τ = τm−i +
(2r)2

2Di

+ τi−m (22)

where (2r)2/2Di is an average time of diffusion of the B atom through the embryo along
the ∇C-direction, τm−i the time of transfer over the right interface (metastable parent
phase/embryo) before diffusion and τi−m the time of reaction with A atoms at the left interface
(embryo/metastable phase).

Therefore

ν(c)+ = (2h)2

s0

1

τm−i + (2r)2/2Di + τi−m

exp

{
−�G(c)(N ↑)



}
(23)

�G(c)(N ↑) is a potential barrier for joining one B atom (and q A atoms, necessary for
stoichiometry AqB1) via the (c) mode and  = kT . This potential barrier can be interpreted
as a change of Gibbs free energy by one defect B and q defects A in the intermetallic before
reaction between them.

Evidently, the times of reaction at the interfaces and of random walk in opposite direction
are the same as for elementary joining process, so that ν− differs from ν+ only due to Boltzmann
factors.

ν
(c)
− = (2h)2

s0

1

τm−i + (2r)2/2Di + τi−m

exp

{
−�G(c)(N ↓)



}
(24)

where �G(c)(N ↓) is a potential barrier for departure of one B atom (and q A atoms) from the
embryo (figure 10).

Evidently, the difference of the right and left barriers is equal to the change of the Gibbs
free energy by joining one B atom:

�G(c)(N ↑) − �G(c)(N ↓) = G(c)(N + 1) − G(c)(N) = ∂G(c)

∂N

= �g

{
− 1 +

4

3

(
σ1

n�g
ϕ

2
3 +

2σ2

n�g
ϕ− 1

3

)
V − 1

3 +
γ (c)

n�g
(∇c)2 5

96
ϕ− 4

3 V
2
3

}
. (25)

First we will consider the ‘interface reaction times’ τm−i , τi−m to be negligibly small
compared with the time of migration across the embryo. This can be a good approximation in
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the case of coherent boundaries. In this case

ν
(c)
+/− = 2Di

s0

(
h

r

)2

exp

{
−�G(c)(N ↑ / ↓)



}
. (26)

The difference of frequencies is equal to

�ν(c) = ν(c)+ − ν
(c)
− = 2Di

s0

(
h

r

)2

exp

{
− �G

(c)
(N)



}
2 sinh

(
− 1

2

∂G(c)

∂N

)

where �G
(c)
(N) = [�G(c)(N ↑) + �G(c)(N ↓)]/2. Further we suppose |∂G(c)/∂N | � .

Then the explicit form of the driving force in the size space �ν and average frequency
ν(c) = (ν

(c)
+ + ν

(c)
− )/2 are

�ν(c) = − 1



∂G(c)

∂N
ν(c) ν(c) ≈ 2Di

s0

(
h

r

)2

exp

(
− �G

(c)



)
. (27)

For the transversal mode (b) the frequencies have a similar form differing from the mode
(c) due to the diffusion time h2/2Dm instead of (2r2)/2Di ; h is an average distance over
which atoms must migrate in the transversal direction to join the embryo, where Dm is the
interdiffusion coefficient in the metastable parent phase. The frequencies are approximately
given by

ν
(b)
+/− = 4h2

s0

2Dm

h2
exp

{
−�G(b)(N ↑ / ↓)



}
. (28)

The explicit form of the driving force in the size space �ν(b) = ν
(b)
+ − ν

(b)
− and average

frequency ν(b) = (ν
(b)
+ + ν

(b)
− )/2 under the assumption |∂G(b)/∂N | �  are as follows:

�ν(b) = − 1



∂G(b)

∂N
ν(b) (29)

ν(b) ≈ 16Dm

s0
exp

(
−�G

(b)



)
. (30)

To obtain the nucleation barrier, one should consider the equilibrium solution of the
Fokker–Planck equation,

�νf − ∂

∂N
(νf ) = 0. (31)

Really, in the case of only one operating nucleation mode, say, (b), the solution of
equation (31) corresponds to the critical nucleus: ∂G(b)/∂N = 0. The general solution
of equation (31) is as follows:

f (N) = ν(N0)f (N0)

ν(N)
exp

{∫ N

N0

�ν

ν
dN ′

}
. (32)

Then the expression for the equilibrium size distribution function has the following simple
form:

f (N) = f (N0)e
− 1

o

∫ N

N0
∂G(b)

∂N
dN ′

. (33)

Evidently, the minimum of this function is determined by the condition ∂G(b)/∂N = 0, that
coincides with the well known expression from the classical nucleation theory.

Further we generalize the above-mentioned approach on the case of superposition of two
modes. The critical nucleus corresponds to the minimum of the size distribution function
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which is found from the expression (32), where �ν and ν are found as the superposition of
two modes.

In this case

�ν

ν
= −1

θ

(Di/4r2)(∂G(c)/∂N) exp(−�G
(c)
/) + (Dm/h

2)(∂G(b)/∂N) exp(−�G
(b)
/)

(Di/4r2) exp(−�G
(c)
/) + (Dm/h2) exp(−�G

(b)
/)

= − 1



7(∂G(c)/∂N) + (r2/h2)(∂G(b)/∂N)

7 + r2/h2
. (34)

Here parameter 7 = (Di/4Dm) exp(−(�G
(c) − �G

(b)
)/) plays a crucial role in the

competition of nucleation modes. In this paper we will not discuss a thermodynamic part of this
parameter and will concentrate on its dependence on the ratio of diffusivities of intermediate
and parent phases.

Let the derivative ∂ ln ν/∂N be negligibly small. Then the condition f (N) = min reduces
to the equation

�ν

ν
= 0

e.g. (in fact, we treat this equation as a definition of critical point instead of �G = max)

−1 +
4

3

(
σ1

n�g
ϕ

2
3 +

2σ2

n�g
ϕ− 1

3

)
V − 1

3 +
5(∇c)2

96

ϕ− 4
3 V

2
3

n�g

γ (b) + γ (c)7ϕ2

1 + 7ϕ2
= 0. (35)

It is convenient to introduce the non-dimensional parameters

Ṽ = V

V ∗
σ2

σ1
= s γ̃ (b,c) = γ (b,c)

n�g
∇̃c = ∇c (V ∗)

1
3 , where V ∗ = 64σ1σ

2
2

(n�g)3
.

Then equation (36) reduces to the following form:

−1 +
1

3

((
ϕ

s

)2
3

+ 2

(
ϕ

s

)− 1
3
)
Ṽ − 1

3 +
5(∇̃c)2

96
ϕ− 4

3 Ṽ
2
3
γ̃ (b) + γ̃ (c)7ϕ2

1 + 7ϕ2
= 0. (36)

It is very important that the second, gradient term in equation (36) can have different signs
for different Di/Dm ratios. This means that there exists competition between two nucleation
modes. To make this fact obvious consider two limiting cases.

1. 7 → 0—only the transversal mode is operating. Then the last term in equation (36)
is positive, and under a sufficiently sharp concentration gradient, this term together with
the second (surface) term will be more than 1 at any volume. Therefore under sharp
concentration gradients equation (36) has no solutions, there is no critical nucleus and the
nucleation process is impossible. This result coincides with previous results [17–21].

2. 7 → ∞—only the total mixing mode is operating. Then the last term in equation (36) is
negative. In this case the solution of equation (36) exists (and nucleation is possible) at
any concentration gradient.

Certainly, the shape factor depends on volume, and one should take this dependence into
account when solving equation (36). The corresponding equation for the shape factor will be
obtained and solved in the next section. Meanwhile let us analyse equation (36) regarding
factor ϕ as a constant. In this case equation (36) reduces to the cubic equation

ax2 − b +
c

x
= 0 x = Ṽ 1/3. (37)
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If Di/4Dm > (1 − α/α′)/ϕ2, this equation has a solution at any concentration gradient.
If Di/4Dm < (1 − α/α′)/ϕ2 then it has solution under the condition

(∇̃c)2 >
1 + 7ϕ2

γ̃ (b) + γ̃ (−)7ϕ2
· 64

5((ϕ/s)2/3 + 2(ϕ/s)−
1
3 )
. (38)

Thus, under the assumption of constant shape factor the critical gradient exists only if the
diffusivity of the new phase is substantially lower than that of the parent phase. Otherwise
nucleation is possible at any gradient. This conclusion coincides qualitatively with the
result obtained in [22] in the frame of thermodynamics. Nevertheless, strictly speaking, this
conclusion is not correct as we will see below.

5.3. Calculation of shape factor

In the purely thermodynamic approach for every mode of nucleation the shape factor ϕ can
be determined by minimization of the function g(N, ϕ) at every fixed volume V . In the
case of combined modes one cannot calculate ϕ according to this recipe. Obviously, there
must be some distribution of shapes at every given volume V . It is obvious as well that such
distribution must be non-monotonic, with a maximum. The main idea of this section is to
find such a dependence ϕ(V ) (or ϕ(N)), which makes the magnitude of the function f (N, ϕ)

maximal at every fixed N . For this, according to equation (32) for the distribution function,
the following functional derivative should be equal to 0:

δ

δϕ

∫ N

N0

�ν(N ′, ϕ(N ′))
ν(N ′, ϕ(N ′))

dN ′ = 0. (39)

It is easy to show that this equation is equivalent to the differential equation

∂

∂ϕ

(
�ν

ν

)
= 0 (40)

e.g.

2Ṽ − 1
3 s− 1

3 (ϕ− 1
3 − sϕ− 4

3 ) − 5(∇̃c)2

32

Ṽ
2
3 ϕ− 7

3

1 + (Di/4Dm)ϕ2

{
− 4

3
(γ̃ (b) + γ̃ (c)7ϕ2)

− (γ̃ (b) + γ̃ (c)) 24

1 + 7ϕ2

}
= 0. (41)

Thus, the calculation of critical parameters ϕc and Ṽc for the intermediate phase nucleation
in the concentration gradient is made on the basis of equations (36) and (41). The role of
nucleation barrier is played by an integral in the exponential dependence (32) with the upper
limit equal to critical particle number:

�Gcr = 

∫ Ncr

N0

�ν(N ′, ϕ(N ′))
ν(N ′, ϕ(N ′))

dN ′. (42)

An expression f (N0) exp{−�Gcr/} is a minimum of the size distribution function
corresponding to the effective saddle point on the ‘trajectory’ of growing embryo. Here the
shape factor ϕ at any subcritical value N ′ is calculated according to equation (41). It is
easy to check that in the limiting cases of the only one operation mode (b) or (c) expression
(42) is reduced to the classical nucleation barriers corresponding to the maximal values of
the functions �G(b)(N) and �G(c)(N). Further we calculate the non-dimensional effective

nucleation barrier �G̃cr = �Gcr/nV ∗ = ∫ Ṽcr

Ṽ0
(�ν/ν) dṼ .
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Figure 11. Dependence of the critical nucleus volume (non-dimensional) on the non-dimensional
concentration gradient at different ratios of diffusivities in the new and parent phases.

Figure 12. Dependence of the effective nucleation barrier (non-dimensional) on the non-
dimensional concentration gradient at different ratios of diffusivities in the new and parent phases.

5.4. Results

The dependences Ṽcr (∇̃c), �G̃cr(∇̃c), ϕcr(∇̃c) have been obtained for the case s = 1,
γ̃ (b) = 0.9, γ̃ (c) = −1. Formally speaking, the critical nucleus exists at any concentration
barrier and the critical volume can increase rather substantially, making the nucleation very
difficult. The specific form of the functions Ṽcr (∇̃c) and �G̃cr(∇̃c) depends on the ratio
Di/4Dm. At d ≡ Di/4Dm < d∗ = 3.58 the functions Ṽcr (∇̃c) and �G̃cr(∇̃c) are non-
monotonic with a maximum (figures 11 and 12) which shifts to the zero ∇̃c on increasing
7 to d∗. On decreasing d to zero this maximum �Gmax

cr tends to infinity, figure 13 (the
transversal mode is overwhelming). At d > d∗ the functions Ṽcr (∇̃c) and �G̃cr(∇̃c) are
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Figure 13. Dependence of maximal nucleation barrier (non-dimensional) on the ratio of
diffusivities.

monotonous—the sharper is the concentration gradient, the lower is the nucleation barrier
(the total mixing mode is overwhelming). Thus, strictly speaking, there is no critical gradient
in the general case, and nucleation of intermediate phase is possible at any gradient due
to the possibility of the total mixing mode. Instead of a critical gradient beyond which
nucleation would be impossible the characteristic gradient exists at which the probability
of nucleation is the smallest. In the process of the interdiffusion in the parent phase the
concentration gradient decreases and the nucleation barrier increases at first. This means that
the nuclei of the new phase born at the very beginning can become subcritical at the later
stage (if they had no time for growth). Therefore the oscillatory regime of intermediate phase
formation can be possible. Figure 14 shows that critical ϕ (ϕ(Ṽcr )) decreases when Di/Dm

increases.
Here and below calculations are made for the following parameter values: γ̃b = 0.9,

γ̃c = −1.
The main result is that the kinetic constraints and the interference of different nucleation

modes lead to the effective nucleation barriers depending on the ratio of diffusivities as well
as on usual thermodynamic factors.

6. Summary

(1) The choice of the phase formation sequence is determined at the nucleation stage.

(2) Intermediate phase formation can be suppressed by kinetic and/or by thermodynamic
factors.

(3) Kinetic suppression means ‘sucking out’ of the critical nuclei by the growing competing
neighbouring phases with larger diffusivities. It leads to the kinetic part of the incubation
period.

(4) The thermodynamic factor is connected with the concentration gradient influencing the
nucleus shape and the nucleation barrier. The type of influence depends on the mode of
nucleation.
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Figure 14. Dependence of the shape factor for the critical nucleus on the non-dimensional
concentration gradient at different ratios of diffusivities in the new and parent phases.

(5) For polymorphic and transversal modes a sharp ∇C leads to large �G∗ and ‘pancake’
shape. ∇C > ∇Ccrit prohibits the nucleation completely.

(6) In the case of the pure polymorphic nucleation mode the incubation period of intermediate
phase decreases with increasing diffusivity of the parent phase to some asymptotic level
τmin. The difference τ − τmin can be treated as a time of ‘concentration preparation’,
necessary for decreasing the concentration gradient below a certain critical value.

(7) In the case of total mixing nucleation mode the time behaviour of new phase volume and
of number of minimal clusters can be non-monotonic. This means that if the growth rate
of ‘primary’ critical clusters is less than the rate of critical size growth (due to decreasing
concentration gradient), these particles will be disintegrated.

(8) Nucleation modes operate simultaneously with different rates. This leads to a dependence
of the nucleation barrier on the ratio of kinetic parameters—the larger the diffusivity of
the new phase, the lower is the effective nucleation barrier.

(9) Oscillatory nucleation is possible due to simultaneous competitive contributions of
different nucleation modes—overcritical nuclei may find themselves subcritical with
lowering of the concentration gradient.
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