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It is shown that during diffusional growth of the intermediate phase between substances A 
and B for cylindrical and spherical samples, the total diffusion flux relative to the center, 
-S(r)D~3c/&~ where S is the area of the interface, varies by a small amount in the radial 
direction, despite the concentration dependence of the interdiffusion coefficient D(c). In this 
context we propose a constant-flux met.hod which allows the kinetics of the diffusional phase 
growth in cylindrical and spherical samples to be described in a rather simple way. Deviations 
from the parabolic law of phase growth in cylindrical and spherical samples are analyzed. 

INTRODUCTION 

Describing the growth of intermediate layers during 
chemical diffusion offers some difficulty. For this reason, 
many simpliAc_attions are made. Major simplifications in- 
clude putting D(c) =const. This simplification is not alto- 
gether correct because there is a considerable concentra- 
tion dependence of D(c).‘~ For example, it has turned out 
that the mutual-diffusion coefficient in y brass, Cu,Zn,, 
increases by more than a factor of 10, while the zinc con- 
centration grows from 0.62 to 0.66.273 A rigorous D(c) 
relation is known for only some phases of some binary 
systems. Therefore, the problem cannot be solved in the 
general form, for an exact knowledge of the concentration 
dependence of D(c) is needed for each phase of the system. 
A solution to the problem is difficult to tind in the case of 
phase growth in cylindrical and spherical samples, since 
the change in interface area S(r) should be taken into 
account. 

We propose here a universal method for describing the 
phase growth. This technique necessitates no allowance for 
the concentration dependence of D(c). The constant-flux 
method can be applied fairly well to describe intermediate 
phases and simplifies the description of the kinetics of the 
phase growth in planar, cylindrical, and spherical samples. 

MODEL AND RESULTS 

For the sake of simplicity, we consider a binary system, 
A-3, with a single intermediate phase, A,,,B [where the 
atomic concentration of B is c!$ = l/( 1 + p + S) and c$ 
= l/( 1 f p F S)], and assuming the mutual solubilities of 
A and B b /E negligibly small (Fig. 1) = The results pre- 
sented below hold for ‘as many phases as desired. It has 
been shown’ that during the dB%sion growth of the planar 
ph;L”e layer in the diffusion specimen A-B, the fluxes 
-D&/sax relative to the end of the spec.imen on the right, 
JR, and left, JL, interface differ slightly: 

CL . ..s J CL 
<kJR”,&~~’ (1) 

Here cL and CR are the volume fractions of B on the left- 
hand and right-hand phase interfaces. For almost every 
intermediate phase AC z CR - cL > 0, is not more than 0.1 
and frequently less than 0.0 1. Therefore, 

AJ/JL(AJ/JR)-Acgl, here AJs IJL-JR]. 

For the case of different molar volumes wA#og, one 
needs to use volume fluxes6 rather than atom fluxes and the 
volume fractions 

c(x) = 
N@B 

N,4@‘4 + NBW B 
=og p(x) 

w’ 

instead of the atomic concentration cat(x) =N$(NS4 
+NB). Here NA and NB stand for the number of atoms A 
and B in a small volume in the vicinity of X, and w’= ( 1 
-Pt)wA +catwB is the average atomic volume. 

For the planar case, taking the fluxes on the left and 
right interfaces, JL = c,dx L/dt and JR = - ( 1 -CR) dx,/dt, 
to be equal to the average flux (Ref. 5) 

s Dhc 
xR J(x)dxmx, 

XL 

we obtain the following expression for the phase growth 
rate 

dX 1-Ac DAc .=. 
up’=z=cL( 1-Q) x * (2) 

Here X=zR--XL is the layer width, D 
= l/AclzTD(c)dc is an effective interdiffusion coefficient 
in the phase. The solution (2) is a well-known parabolic 
law [Fig. 2(a)]. 

x2= 
2(1-Ac)DAc 

cL(l-CR) 
t=Pt (3) 

(K is the growth rate constant). 
This simple formula is valid for any D(c) relation and 

also for any binary system, owing solely to the constant- 
flux approximation. 
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FIG. 1. A concentration profile during diffusion growth of an intermedi- 
ate phase between substances A and B. cL and cR are the volume fractions 
of B on the left-hand and right-hand interfaces, kl/(xR 
-xLqc(xMx. 

In the Appendix we prove that for the phase growth in 
samples with variable cross sectio_ns, the total flux remains 
almost constant, i.e., J= --(x)D(c)ac/ax~cconst. 

Averaging the flux J of mass l/S(x) yields5,7 
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FIG. 2. Influence of geometry on phase growth kinetics: (a) parabolic 
law of phase growth in planar geometry; (b) phase growth acceleration in 
case of iTcO.5 in spherical and cylindrical geometry, LO.1 (1) and 
2=0.3 (2); (c) phase growth slowing in the case of F>0.5 in spherical 
and cylindrical geometv, Z=O.75 (1) and E=0.9 (2), and acceleration 
towards the sample’s center. The calculation has been done for the mo- 
ment in time, when substance d has disappeared. 
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L-DLq( Jx; &). 
Applied to cylindrical and spherical samples, Eq. (4) 
yields’ 

Jsph = - 4mLrR DAc/R, R = rR - IL ) 

Jcyl= -2~DAc/h( rR/rL). (5) 

Here rL and rR are the radii of the inner and outer inter- 
faces. 

Consider further the influence of surface curvature on 
phase growth. Setting the fluxes on the inner and outer 
spherical surfaces, JL=4m$cLdrt/dt and JR= -477 &:R( 1 
-cR)drR/dt, equal to the average flux (5) gives an expres- 
sion for the phase growth rate 

dR cLrL/rR+ ( l-cR)rR/rL DhC 
-= %h= & cL(l--CR) R * 

A comparison of Eqs. (6) and (2) shows that us+,,, > uPI 
for the case R =X and F< 0.5. Therefore, R(t) > X( t) for 
the same t’s [Fig. 2(b)]. But if F>0.5, the spherical phase 
layer first grows more slowly than the planar layer [Fig. 
2(c)], and then, for R/r,=2- Cl-Ac)/cL, it starts to 
grow more rapidly. 

Similar equation results for the cylindrical case are 
obtained 

dR cL+(l-@r&I; Dhc 
%yl=~= 

cL(l-cRbR in(rR/rL) * 
(7) 

Computer calculations using Eq. (7) were done for the 
case Ac<l, cLs=cR- --Ffor F=O.l, 0.3, 0.75, and 0.9 (Fig. 
2). 

The deviation from the parabolic growth law is the 
more pronounced the greater the difference between F and 
value 0.5, which, in fact, is obvious from Figs. 2(b) and 2c. 
For F=O.75 and 0.9 the phase grows more slowly, accel- 
erating only towards the sample’s center [Fig. 2(c)]. 

However, for FzzO.55-0.7, the phase growth in cylin- 
drical and spherical samples may be described by a para- 
bolic dependence even for R Z rL, because its deviations are 
within the experimental error values ( - 1 to 2%). 

It is shown analytically that for the case of diffusion 
growth of two phases between ;4 and B, the curvature of 
interfaces influences their growth in the following way 
(Fig. 3). In the case of a slowly growing phase layer, 
A,B(2), surrounded by a rapidly growing phase, A,B( l), 
phase 2 grows more slowly, both in the spherical and cy- 
lindrical cases, than in the planar case [Fig. 3(c)]. If the 
phase 2 layer surrounds the phase 1 layer, conversely, the 
phase 2 layer grows faster than in the planar case Fig. 
3 (b)]. But a rapidly growing phase 1 can grow either faster 
(for F1 <0.5zz) or more slowly [for 0.5Fz <F, < 4, Fig. 
3(b)] than in the planar case. 

The above mentioned results were tested and proved 
experimentally on a Cu-Zn system.’ That is why the cal- 
culation has been done for case F1=0.68 and zz=0.84. 
Here c is the volume fraction of Zn, phase 1 is the y brass 
and phase 2 is the E brass. 
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FIG. 3. Inffuence of geometry on diffusion growth kinetics of two phases, 
.4,3(l) and +3(Z), in a binary system. The case of q<p< 1. (a) Par- 
abolic law of phases growth in planar geometry; (b) phase 1 growth 
slowing ic=O.hS) and phase 2 growth acceleration (c2=0.S4) in spher- 
ical and cylindrical geometry, a is the volume fraction of & (c) phase 1 
growth acceleration (c,=O.32) and phase 2 growth slowing (c,=O.16) in 
spherical and cylindrical geometry, c is the volume fraction of A. The 
calculation has been done for a time, when substances A(b) and B(c) 
have not disappeared. 

The constant-flux method has &owed us to draw the 
conclusion that roughness of interfaces should become 
smooth within diffusion phase growth’ (Fig. 4). Such a 
process is taking place because convexity moves more 
slowly than the planar interface and concavity moves more 
rapidly than the planar interface (see arrows in Fig. 4). 

- 

- - 

- 

- 

PIG. 4. Roughness smoothing during phase growth. Smoothing rate is 
the more pronounced, the smaller the roughness radius. 
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The diffusion flux density decreases at convexity and in- 
creases at concavity. The diffusion flux density is likely to 
have a steady tendency for becoming uniform. Therefore, 
the roughness of interfaces is apt to be self-smoothing. At- 
tention is drawn to the result, that smoothing rate is the 
more pronounced, the smaller the roughness radius. The 
smoothing of interfaces was experimentally observed dur- 
ing the growth of y-(CusZns) brass at a temperature of 
230 C9 

CONCLUSIONS 

( 1) In describing diffusion phase growth in binary sys- 
tems, it is necessary to use the constant-flux approximation 
instead of the constant diffusion coefficient approximation. 
This is because the diffusion coefficient may vary by more 
than a factor of 10 within the range of phase homogeneity 
AC, while the diffusion flux may vary by only a few percent. 

(2) The constant-flux approximation permits a fairly 
simple description of diffusion phase growth in planar, cy- 
lindrical, and spherical samples without any distinction for 
the various binary systems (only cL, CR9 and radii should be 
taken into account). 

(3) If the average phase concentration of the external 
substance is less than 0.5, the phase in both cylindrical and 
spherical cases grows more rapidly than in the planar case. 
By contrast, if C>O.5, the phase in both cylindrical and 
spherical cases grows more slowly than in the planar case, 
but the growth accelerates towards the center of the sam- 
ple. 

(4) If 0.55 dFs0.7, the phase growth in cylindrical 
and spherical samples may be described by a parabolic 
dependence similar to the planar case. 

(5) There are several cases for two-phase binary sys- 
tems. A slowly growing phase 2 in both cylindrical and 
spherical cases grows more rapidly than in the planar case; 
this is so if this phase surrounds a rapidly growing phase 1. 
Conversely, a slowly growing phase 2 in both cylindrical 
and spherical cases grows more slowly than in th.e planar 
case, if this phase is surrounded by a rapidly growing phase 
1. A rapidly growing phase 1 can grow in both cylindrical 
and spherical cases, either more rapidly or more slowly 
than in the planar case (see conclusion 3; the value 0.5 is 
replaced by 0.5Fz). 

(6) Attention is also drawn to the result, that the 
growth rates in convex and concave surfaces, is such that 
the interface boundary is liable to smoothing during phase 
growth. The smoothing rate is the more pronounced, the 
smaller the roughness radius. Therefore, we consider the 
“ideal” surfaces (plane, cylinder, and sphere) instrumental 
in describing phase growth. 

APPENDIX 

Here it is shown that in the cylindrical and spherical 
cases, when S is a function of radius, the total diffusion flux 
relative to the center will be almost constant along the 
radial direction. We have the following problem 
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SC?-) ;=g (s&)=-;, 

c[t,rL(t) ] =q;c[t,r&)] =cR;cyc~=Ac, 

drL - ac 
W&L ~=JL= --S(rL) D z 2, 

, 

‘iz 

rL(O) =rdO) =c4; 

NrL(O) 1 =S[rdO) 1; 

I 
0, r < r,4 , 

c(t=OA= 1, r,rA. 

Here rL and r, are the radii of inner and outer phase 
interfaces, S(rL) and S(rR), respectively, their areas, CL 
and cR are the equilibrium concentrations on phase inter- 
faces. In this case, the Boltzman solution x/t”*-+ r/t”’ is 
invalid since S is a function of radius only. It is assumed 
that c( r,t) is a monotonous function of r. This assumption 
is confirmed experimentally. It allows us to go from the 
function c(t,r) to the function r(t,c) =r,(t), which de- 
scribes the motion of the constant-concentration surfaces. 
Then the first equation of the system Eq. (Al) becomes 

S[r(t,c)] 5=-g (“‘~~~~‘)=~. (A2) 

Taking the partial derivative of Eq. (A2) with respect to c 
yields 

;(S;)=;(S$)=-$(&)=$. (A3) 

Integration of Eq. (A3 ) from c L to c( c < cR) yields 

d 
cR,$~&zr 

dV(cL,c) dJ 8J 

z cL s ac 
dt =ac-z . (A4) 

CL 

Here V(cL,c) is a part of the volume with the concentra- 
tion varying from cL to c. On the phase boundaries cL and 
cR the derivative of J with respect to c transforms to a finite 
difference 

f3J JL-0 JL 

ac CL 
=-=-9 CL-O CL 

For c=cR Eqs. (A4) and (A5) give 

dUcL,cd -JR JL 
dt =--CL* (A6) 

Integrating Eq. (A4) between cL and cR and allowing for 
Eq. (A6), we obtain 

AJr 1 JR-JLI = lgi AC 
CL 

dc 

(A7) 

Equation (A7) gives 

CL ~-Q-AC JL cL 1 --CL 
CR+AC 1-Q ~- ‘J,‘c,- 2Ac 1 -cR ’ (A81 

According to Eq. (AS), the region of possible values of 
J,/J, is somewhat wider than that for planar case ( 1) , but 
it remains rather small: AJ/JL(AJ/‘JR) -Ahc(l. 

Thus, the approximation of constant total flux is much 
more acceptable than that of constant interdiffusion coef- 
ficient (see, for example, Ref. 10). The latter can vary by a 
factor of 10 to 50 over the regionpf homogeneity AC (Refs. 
14). 
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