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It is shown that during diffusional growth of the intermediate phase between substances A4
and B for cylindrical and spherical samples, the total diffusion flux relative to the center,
~8(r) Ddc/dr, where S is the area of the interface, varies by a small amount in the radial
direction, despite the concentration dependence of the interdiffusion coefficient D(c). In this
context we propose a constant-flux method which allows the kinetics of the diffusional phase
growth in cylindrical and spherical samples to be described in a rather simple way. Deviations
from the parabolic law of phase growth in cylindrical and spherical samples are analyzed.

INTRODUCTION

Describing the growth of intermediate layers during
chemical diffusion offers some difficulty. For this reason,
many simplifications are made. Major simplifications in-
clude putting D(c) =const. This simplification is not alto-
gether correct because there is a considerable concentra-
tion dependence of D(c) 4 por example, it has turned out
that the mutual-diffusion coefficient in y brass, CusZng,
increases by more than a factor of 10 whlle the zinc con-
centration grows from 0.62 to 0.66.%° A rigorous D(c)
relation is known for only some phases of some binary
systems. Therefore, the problem cannot be solved in the
general form, for an exact knowledge of the concentration
dependence of D(c) is needed for each phase of the system.
A solution to the problem is difficult to find in the case of
phase growth in cylindrical and spherical samples, since
the change in interface area S(») should be taken into
account.

We propose here a universal method for describing the
phase growth. This technique necessitates no allowance for
the concentration dependence of D(c). The constant-flux
method can be applied fairly well to describe intermediate
phases and simplifies the description of the kinetics of the
phase growth in planar, cylindrical, and spherical samples.

MODEL AND RESULTS

For the sake of simplicity, we consider a binary system,
A-B, with a single mtermedlate phase, 4,, sB [where the
atomic concentration of B is c = 1/(1 + p + 8) and ¢

= 1/(1 + p — 8)], and assuming the mutual solubilities of
A and B io be negligibly small (Fig. 1). The results pre-
sented below hold for as many phases as desired. It has
been shown® that during the diffusion growth of the planar
phase layer in the diffusion specimen A-B, the fluxes
— Dde/dx relative to the end of the specimen on the right,
Jrs and left, J;, interface differ slightly:

Cr .J L Cr.

S . (1)
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Here ¢y and cp are the volume fractions of B on the left-
hand and right-hand phase interfaces. For almost every
intermediate phase Ac=cgp—c; >0, is not more than 0.1
and frequently less than 0.01. Therefore,

AJ/TL(AJ/Jg) ~Ack], here AJ=|J;—Jg].

For the case of dlﬁ"erent molar volumes w g, One
needs to use volume fluxes® rather than atom fluxes and the
volume fractions

N
BD B -—Efca"(x)

ex)= N4w4+NBco o’

instead of the atomic concentration ¢*(x)=Np/(N,
+N ). Here N, and N g stand for the number of atoms 4
and B in a small volume in the vicinity of x, and o’= (1
—c™ w4+ c*wp is the average atomic volume.

For the planar case, taking the fluxes on the left and
right interfaces, J;=c;dx;/dt and Jy= — (1 —cgp)dxy/dt,
to be equal to the average flux (Ref. 5)

-1 v"RJ d DAc
=¥ fo x)dx=— ¥

we obtain the following expression for the phase growth
rate

dX 1—Ac DAc ,
P d oo X @
Here X=xz—x; is the layer width, D

= 1/Ac f ‘RD(c)dc is an effective interdiffusion coefficient

in the phase The solution (2) is a well-known parabolic
law [Fig. 2(a)].

21—
X2=-(1 Ac) DAc K (3)
C L( 1 —C R)
(K is the growth rate constant).
This simple formula is valid for any D(c) relation and
also for any binary system, owing solely to the constant-
flux approximation.
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FIG. 1. A concentration profile during diffusion growth of an intermedi-
ate phase between substances 4 and B. ¢; and ¢y are the volume fractions
of B on the left-hand and right-hand interfaces, ¢=1/(xy
—x7) fi‘;c(x)dx,

In the Appendix we prove that for the phase growth in
samples with variable cross sections, the total flux remains
almost constant, i.e., J=—S(x).D(c)dc/Ix ~const.

Averaging the flux J of mass 1/5(x) yields*’
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FIG. 2. Influence of geometry on phase growth kinetics: (a) parabolic
law of phase growth in planar geometry; (b) phase growth acceleration in
case of €«0.5 in spherical and cylindrical geometry, &=0.1 (1) and
£=0.3 (2); (c) phase growth slowing in the case of ¢>0.5 in spherical
and cylindrical geometry, £==0.75 (1) and ¢=0.9 (2), and acceleration
towards the sample’s center. The calculation has been done for the mo-
ment in time, when substance 4 has disappeared.
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- xg  dx (4
:—DAC/( "y S(x))' (4)

Applied to cylindrical and spherical samples, Eq. (4)
yields®

Jsph= —4nrrgDAc/R, R=rp—rg,

jcyl= —ZWDAC/In(rR/rL)~ (5)
Here r; and ry are the radii of the inner and outer inter-
faces.

Consider further the influence of surface curvature on
phase growth. Setting the fluxes on the inner and outer
spherical surfaces, J; =4mric dr /dt and Jp= —4m rx(1
—cgr)drg/dt, equal to the average flux (5) gives an expres-
sion for the phase growth rate

dR cyri/rr+(1—cg)rg/r. DAc
Yo =g = cr(l—cg) R

A comparison of Eqgs. (6) and (2) shows that vy, > vy
for the case R=X and ¢ <0.5. Therefore, R(#) > X(¢) for
the same ¢'s [Fig. 2(b)]. But if £ 0.5, the spherical phase
layer first grows more slowly than the planar layer [Fig.
2(c)], and then, for R/rg=2—(1—Ac)/c;, it starts to
grow more rapidly.

Similar equation results for the cylindrical case are
obtained

(6)

DAce
In(rg/rr)’

AR cp+(l—cp)re/re
Vet = dt_ CL(I-—CR)I'R

Computer calculations using Eq. (7) were done for the
case Acgl, cp=~cg=~c for c=0.1, 0.3, 0.75, and 0.9 (Fig.
2).

The deviation from the parabolic growth law is the
more pronounced the greater the difference between ¢ and
value 0.5, which, in fact, is obvious from Figs. 2(b) and 2c.
For ¢=0.75 and 0.9 the phase grows more slowly, accel-
erating only towards the sample’s center [Fig. 2(c)].

However, for €=~0.55—0.7, the phase growth in cylin-
drical and spherical samples may be described by a para-
bolic dependence even for R R #;, because its deviations are
within the experimental error values (~1 to 2%).

It is shown analytically that for the case of diffusion
growth of two phases between 4 and B, the curvature of
interfaces influences their growth in the following way
(Fig. 3). In the case of a slowly growing phase layer,
AqB(?.), surrounded by a rapidly growing phase, A4 pB(l),
phase 2 grows more slowly, both in the spherical and cy-
lindrical cases, than in the planar case [Fig. 3(c)]. If the
phase 2 layer surrounds the phase 1 layer, conversely, the
phase 2 layer grows faster than in the planar case [Fig.
3(b)]. But a rapidly growing phase 1 can grow either faster
(for ¢,<0.5¢;) or more slowly {for 0.5¢,<c; <¢,, Fig.
3(b)] than in the planar case.

The above mentioned results were tested and proved
experimentally on a Cu-Zn system.” That is why the cal-
culation has been done for case ¢;=0.68 and ¢,=0.84.
Here c is the volume fraction of Zn, phase 1 is the y brass
and phase 2 is the € brass.

(7
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FIG. 3. Influence of geometry on diffusion growth kinetics of two phases,
ApB(1) and 4,B(2), in a binary system. The case of g<p<1. (a) Par-
abolic Jaw of phases growth in planar geometry; (b) phase 1 growth
slowing (¢=0.68) and phase 2 growth acceleration (¢;=0.84) in spher-
ical and cylindrical geometry, ¢ is the volume fraction of B; (¢) phase 1
growth acceleration (¢, =0.32) and phase 2 growth slowing (¢,=0.16) in
spherical and cylindrical geometry, ¢ is the volume fraction of 4. The
calculation has been done for a time, when substances A(b) and B(c)
have not disappeared.

The constant-flux method has allowed us to draw the
conclusion that roughness of interfaces should become
smooth within diffusion phase growth® (Fig. 4). Such a
process is taking place because convexity moves more
slowly than the planar interface and concavity moves more
rapidly than the planar interface (see arrows in Fig. 4).
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FIG. 4. Roughness smoothing during phase growth. Smoothing rate is
the more pronounced, the smaller the roughness radius.
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: The diffusion flux density decreases at convexity and in-

creases at concavity. The diffusion flux density is likely to
have a steady tendency for becoming uniform. Therefore,
the roughness of interfaces is apt to be self-smoothing. At-
tention is drawn to the result, that smoothing rate is the
more pronounced, the smaller the roughness radius. The
smoothing of interfaces was experimentally observed dur-
ing the growth of y-(CusZng) brass at a temperature of
230°C.®

CONCLUSIONS

(1) In describing diffusion phase growth in binary sys-
tems, it is necessary to use the constant-flux approximation
instead of the constant diffusion coefficient approximation.
This is because the diffusion coefficient may vary by more
than a factor of 10 within the range of phase homogeneity
Ace, while the diffusion flux may vary by only a few percent.

(2) The constant-flux approximation permits a fairly
simple description of diffusion phase growth in planar, cy-
lindrical, and spherical samples without any distinction for
the various binary systems (only ¢, cg, and radii should be
taken into account).

(3) If the average phase concentration of the external
substance is less than 0.5, the phase in both cylindrical and
spherical cases grows more rapidly than in the planar case.
By contrast, if ¢> 0.5, the phase in both cylindrical and
spherical cases grows more slowly than in the planar case,
but the growth accelerates towards the center of the sam-
ple.

(4) If 0.555¢%50.7, the phase growth in cylindrical
and spherical samples may be described by a parabolic
dependence similar to the planar case.

(5) There are several cases for two-phase binary sys-
tems. A slowly growing phase 2 in both cylindrical and
spherical cases grows more rapidly than in the planar case;
this is so if this phase surrounds a rapidly growing phase 1.
Conversely, a slowly growing phase 2 in both cylindrical
and spherical cases grows more slowly than in the planar
case, if this phase is surrounded by a rapidly growing phase
1. A rapidly growing phase 1 can grow in both cylindrical
and spherical cases, either more rapidly or more slowly
than in the planar case (see conclusion 3; the value 0.5 is
replaced by 0.5¢;).

(6) Attention is also drawn to the result, that the
growth rates in convex and concave surfaces, is such that
the interface boundary is liable to smoothing during phase
growth. The smoothing rate is the more pronounced, the
smaller the roughness radius. Therefore, we consider the
“ideal” surfaces (plane, cylinder, and sphere) instrumental
in describing phase growth.

APPENDIX

Here it is shown that in the cylindrical and spherical
cases, when S is a function of radius, the total diffusion flux
relative to the center will be almost constant along the
radial direction. We have the following problem
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(r)gi-—'a‘;( (r) 'é;)—--gr‘,

c[eri(t) 1=cpeltrr(t) 1 =cger—cr=Ac,

dry ~ dc
S(rp)er *d7=JL=—S("L)D’a—r , (A1)

L

H
R

drp . ~ dc
—S(rR)(l——cR) _"i‘t“zJR= ""S()'R)Dg;

rp(0)=rg(0)=rg
S[r.(0)]1=S8[rr(0)];

0, r<r‘4,
cU=0n=11, r>r,.

Here r; and 7 are the radii of inner and outer phase
interfaces, S(r;) and S(rg), respectively, their areas, ¢
and cp are the equilibrium concentrations on phase inter-
faces. In this case, the Boltzman solution x/t /i s
invalid since S is a function of radius only. It is assumed
that ¢(r,t) is a monotonous function of r. This assumption
is confirmed experimentally. It allows us to go from the
function ¢(t,7) to the function r(zc)==r.(¢), which de-
scribes the motion of the constant-concentration surfaces.
Then the first equation of the system Eq. (A1) becomes

d (S[r(te)1D\ o
_5( Or/dc )_5;'

Taking the partial derivative of Eq. (A2) with respect to ¢
yields

or
S[r(ze)] Fr (A2)

3 Sar 3 s ar *(SD\ & A3

a—c( a—t)—a—t( &)-*m(ar/ac)—w- (A3)
Integration of Eq. (A3) from ¢; to c(c <cg) yields

d (e _dr  dVlcpe) o] A A4

d_tf 3 %= _8c_<9c' (A4)

L

Here ¥ (cy,c) is a part of the volume with the concentra-
tion varying from ¢, to ¢. On the phase boundaries ¢; and
cg the derivative of J with respect to ¢ transforms to a finite
difference

aJ J—0 Jp 9

‘L °r
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For ¢=cy Bgs. (A4) and (AS5) give

dV(CL,CR) —JR JI.
dt  1—cg ¢’

(A6)

Integrating Eq. (A4) between ¢, and cp and allowing for
Eq. (A6), we obtain

aJ
ME'JR—JLI =IEE

Ac
€l

R dV(CL,C)
—f —ar de
°r

Vel el gl
&( ey + ) +1_CR)AC. (A7)
Equation (A7) gives
¢ l—ecg—Ac J ¢ 1—¢
L R L L L (A8)

cg+Ac  1—cg **.—I_RQCL—ZACI—CR'

According to Eq. (A8), the region of possible values of
J /T is somewhat wider than that for planar case (1), but
it remains rather small: AJ/J (AJ/JR) ~Ac<l.

Thus, the approximation of constant total flux is much
more acceptable than that of constant interdiffusion coef-
ficient (see, for example, Ref. 10). The latter can vary by a
factor of 10 to 50 over the region of homogeneity Ac (Refs.
1-4).
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