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Ripening with noise
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The process of ripening has been considered taking into account the noise from
different sources, namely the scatter of compositions (supersaturation �) in the
vicinity of precipitates and scatter of the Gibbs–Thompson term �. The evolution
of the particle size distribution (PSD) has been investigated using parameters that
characterize the width, sharpness and slope of the peak. Accounting for noise in
our model produces a PSD that is closer to the experimental data compared with
LSW theory.
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1. Introduction

LSW theory [1–4] still remains the basis of our understanding of ripening. Yet
experimentally observed particle size distributions (PSDs) at the asymptotic stage
of ripening are usually broader than those predicted by LSW theory. There are
different possible reasons for this [5–10]. There is one more reason, however,
which seems to be obvious, but, to our knowledge, has not been investigated system-
atically, and that is noise. The aim of the present paper is to do this by simple
simulations of the growth/shrinkage equations with noise terms for a large array
of independent precipitates. In this analysis we do not take the short-range order and
corresponding correlations into account—that is the subject of a separate paper.
Therefore, our noise is of Gaussian type consisting of many independent contribu-
tions with additive dispersions.

The growth/shrinkage of each individual precipitate under the assumption of
steady-state concentrations is determined by the well-known equation, which we
write here for the ripening of almost pure element B in a weak solution:
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where Ceq is the equilibrium concentration (atom fraction) at the planar interface,
C(t, o) is the local concentration at the ‘point’ with radius vector o, where ‘point’
means a ‘small’ volume containing at least one precipitate, � is the isotropic surface
tension, O is the molar volume, and T is temperature.

Supersaturation here characterizes the vicinity of the precipitate with a charac-
teristic length not less than the particle size r.

One can distinguish at least three possible sources of noise—the scatter of diffu-
sivities D in the vicinity of precipitates due to local structure inhomogeneities in the
parent phase, the scatter of the Gibbs–Thomson term � (due to surface tensions � or
ceq, or T) and scatter of compositions (supersaturations�) in the vicinity of particles.
In the following we analyse these types independently, constructing the correspond-
ing algorithms for numerical simulations (sections 2 and 3). We start (section 2) with
scatter of compositions since this factor seems to be unavoidable even for ‘pure’
experiments (long-term annealed alloys with minimal structure inhomogeneities,
small lattice mismatch).

2. Noise of concentrations

The growth/shrinkage rate of each particle is determined, first of all, by local
supersaturation in the vicinity. In LSW theory this supersaturation is considered
to be some mean-field value, the same around each particle due to the very fast
diffusive composition equilibration compared with the slow dynamics of ripening.
In other words, the characteristic time of composition equilibration in some region
of size l (proportional to the interparticle distance) is much slower than the
characteristic time of precipitate size evolution:

l2

D
�

rh i
3

D�
, t ! 1: ð2Þ

However large l becomes, l2 increases with time as t2/3, and rh i
3 increases with

time as t1, therefore, eventually (at the asymptotic stage), inequality (2) will hold.
Strictly speaking, this argument is not correct, since inequality (2) does not indicate
the equilibration of compositions, but just the rapid attainment of the steady-state
concentration field. This field is, strictly speaking, not homogeneous due to
the random distribution of precipitates serving as sinks/sources. Yet, as we will see
below, if the number of particles in the l region is large, their contributions to
the concentration field almost compensate each other (noise is negligible), and the
mean-field approximation works well. On the other hand, we will see that, in real
experimental situations, the l region cannot be regarded as large enough, and the
noise factor becomes important (as well as the short-order correlations, but this is
the subject of a separate paper).

One of the most important developments in ripening theory after LSW was the
discovery of the screening effect [6, 7]. Since this effect seems to be crucial for an
understanding of ripening problems, let us briefly review the main idea. The
concentration field around each particle is modified by the surrounding particles,
serving (in coarsened space scale o with d3��L3, L being the half-distance between
the centres of neighbouring particles) as a medium with sinks/sources. Therefore, in

1324 A. M. Gusak and G. V. Lutsenko



this coarsened scale the diffusion equation for the concentration field around a
particle can be written as

oCðt, oÞ

ot
¼ Dr

2C �

ð
4pr2

dr

dt

����
�

�f t, rjoð Þdr, ð3Þ

with f t, rjoð Þ ¼ f ðt, rÞ being the PSD, normalized to the density of precipitates per
unit volume, ð

f ðt, rÞ dr ¼ n �
1

L3
, ð4Þ

and dr=dtj� being determined by equation (1). Substituting equations (1) and (4) into
equation (3), together with the steady-state approximation, gives

r
2C ¼ 4p

ð
r�ðoÞ f t, rjoð Þ dr� �n

� �
:

Now we assume (as a first-order approximation) the local supersaturation to be
uncorrelated with size. Such an approximation is common in screening theories.
Then the supersaturation can be extracted from the integral on the right-hand side
of the last equation, which can now be expressed in terms of the average size

r
2C ¼ 4pn rh i� oð Þ � �ð Þ:

We thus obtain the screening-type equation

r
2
� � oð Þ � ���
� �

¼
1

l2
� oð Þ � ���
� �

, l ¼ 4pn rh ið Þ
�1=2, ð5Þ

where ��� ¼ �= rh i (in standard LSW theory this would be a mean-field supersatura-
tion), with a typical spherically symmetrical solution

�ð oÞ � ���
� �

�
expð � �=lÞ

�
: ð6Þ

Here, l is the screening length, which is more convenient for us to express in terms
of the interparticle half-distance length L (size of the ‘Wigner cell’) and volume
fraction f. From equation (5) we have l ¼ 1=4pn rh ið Þ

1=2. The density of particles
per unit volume is n¼N/V¼ 1/(4/3)pL3 ((4/3)pL3 is the ‘elementary’ volume per
particle (on average), which we can consider as a sphere (or a cube, L3)).Then,

l ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4=3ÞpL3

4p rh i

s
¼

ffiffiffiffiffiffiffiffi
L3

3 rh i

s
:

We neglect factors of the order of unity, and take

l �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
L3= rh i

q
� rh i � f �1=2

¼ L � f �1=6: ð7Þ

The existence of a screening length means that each precipitate can ‘feel’ the
existence of other precipitates only within the l sphere. In other words, the randomly
walking atom can reach the ‘central’ precipitate without being trapped by other
precipitates only if it starts its migration within the l sphere. The radius of the l
sphere as well as the number Z of particles (Z� l3/L3

� f�1/2) inside it increase with
volume fraction f tending to zero. Of course, the screening effect exists for any
volume fraction, but the above equations are valid for small volume fractions
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only, when the screening length is much longer than the mean interparticle distance
(see below). Only in this case can one use the coarsened space scale.

2.1. Determination of the ‘noise level’

Let us first analyse the noise effect for the case of very small volume fractions, where
we can use the coarsened space scale. Let us divide the space around some ‘central’
particle into concentric spheres of radii l and thickness dl � 1, but containing suffi-
cient precipitates (‘physically small volumes’). The number of precipitates inside each
spherical slice is n*4pl2dl. Each (kth) precipitate gives the following contribution to
the deviation of the supersaturation around the central particle:

�C1½k� ¼
r½k� ��½k� � �

l
exp �

l

l

� �
�

r½k� � ���� �

l
exp �

l

l

� �
: ð8Þ

Here we treat r[k] (and the corresponding �C1[k]) as random values, uncorrelated
with the central particle size and each other. The dispersion of contributions from
individual particles is then equal to

ð�C1Þ
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(here we have used the relations rh i ¼ �= ��� and �C1

	 

¼ 0).

Since the contributions of all precipitates to the composition around the central
particle are regarded as independent, the total dispersion will be the sum of the
dispersions of the individual contributions
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In terms of volume fractions it translates into the following ‘noise level’:

� �
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The term in parentheses on the RHS of equation (10) characterizes the width of the
size distribution, and for the LSW distribution it is equal to 0.0463 (the square root
being 0.21).

Equations (10) and (11) demonstrate why a mean-field approximation should
work well in the limiting case f ! 0 (LSW theory). The inputs of large numbers of
precipitates from the l sphere almost compensate each other, allowing the use of the
concept of the unique average concentration.

The ‘noise level’, even for a volume fraction as small as 1%, should be 6.8%,
which is important, especially in the vicinity of the critical size. Moreover, feedback
will play a role—noise will broaden the PSD, and this broadening, in turn, makes the
noise value even larger. Experimentally observed PSDs have a width (standard
deviation) significantly larger than the LSW value of 0.21.

The above analysis was based on using the coarsened space scale with ‘elemen-
tary volume’ 1/n much less than the volume of the l sphere. Such a continuous
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description fails when the screening length l is of the order of or less than 2L, the
average distance between neighbouring particles. From equation (7), one can see that
this occurs if f � f 	

¼ ð1=2Þ6 � 0:016. For volume fractions roughly equal to or
greater than this 2% threshold, we should consider an L sphere instead of the
l sphere: each precipitate in this case interacts diffusively only with its nearest
neighbours. Then

ð�CÞ
2
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�
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so that the noise level will be
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(if one treats the nearest neighbours number Z as independent of volume fraction).
For f¼ 0.05, this gives a noise level of 24%.

Intuitively, it appears evident that such a noise level should significantly influence
the shape of the PSD. Below we present a simple model to investigate this influence.

2.2. Computer model of noise concentration

In accordance with the above arguments, we investigated the time behaviour of an
array of N0 particles (in our simulations N0¼ 9000), changing their sizes according to
the following modification of classical equation (1):

dr3½ i �

dt
¼ 3D � ðr½i� �� � ð1þ "½i�Þ � �Þ, ð14Þ

with

"½i� ¼ � � sinð2p � randomÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1=randomð Þ

p
: ð15Þ

Equation (14) was written and solved for cubic size instead of linear size to prevent
zero appearing in the denominator, when the particle disappears. Applying the phase
volume conservation condition (at the asymptotic stage),

X dr3½i�

dt
¼ 0, ð16Þ

one obtains

� ¼
N�P

r½i� þ
P

"½i� � r½i�
¼

�

rh i þ "rh i
: ð17Þ

Then, instead of equation (14) we use

dr3½i�

dt
¼ 3D� �

r½i� � 1þ "½i�ð Þ

rh i þ "rh i
� 1

� �
, 1 � i � N, ð18Þ

with N decreasing by 1 each time a particle disappears. To obtain better statistics,
each time N becomes equal to N0/2, we double the particle number by creating
‘copies’ of the remaining particles with very small deviations of r[i] and "[i].
Experimentally, this translates into viewing larger and larger volumes. The main
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remaining problem is how to treat the time dependence of the noise. So far we have
treated "[i] as constant in time.

A characteristic PSD (histogram) for a noise level of 0.5 is shown in figure 1 and
is compared with the PSD predicted by LSW theory and experimental data,
summarized by Marder [7]. Moreover, the PSDs obtained were characterized by
special parameters characterizing the width, the slope of the peak and the sharpness,
namely,

standard deviation, s ¼ ðu� 1Þ2
	 
� �1=2

,

skewness, skew ¼ ðu� 1Þ3
	 
� �

=s3,

and

kurtosis, K ¼ ðu� 1Þ4
	 
� �

=s4 � 3:

The ripening rate kgr � ðhri3 � hr0i
3
Þ=t was found to be approximately constant

(after some transient stage depending on the noise level (figure 2(a)). For the
particles size distribution in LSW theory these parameters are s¼ 0.215,
skew¼� 0.920 and K¼ 0.675. In ripening with noise we investigated the behaviour
with time and calculated the asymptotical average values for different levels of noise
(figures 2(b)–(d)). For the case of figure 1, we have �s¼ 0.305, skew¼� 0.18 and
K¼� 0.276. These parameters were calculated from experimental PDSs for different
systems [11, 12]. The summarized data are shown in table 1.

Moreover, for different values of parameter �, the time dependence of the cube of
the average radius was investigated. This dependence still remains linear with growth
rate, depending on the noise level (figure 2(a)). The growth kinetics obtained by the
use of computer modelling for different noise levels are shown in figure 3.

Figure 1. Particle distribution f(u) versus scaled sizes u¼ r/ rh i. The ripening with noise
(histogram) for the case �¼ 0.5 is compared with the predictions of LSW theory (dashed
line) and experimental data summarized by Marder [7].
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3. Noise of the Gibbs–Thomson factor a

It follows from the Gibbs–Thomson equation that the Gibbs–Thomson term may
fluctuate due to the surface tension, equilibrium concentration (depending on the
fluctuating temperature) and the temperature itself.

To investigate the process of the growth/shrinkage of particles we modified
equation (1), giving the following form:

dr3½i�

dt
¼ 3D � � r½i� � �½i�ð Þ, ð19Þ

where �½i� ¼ �0h i � 1þ "½i�ð Þ.
Using the condition of volume conservation we have

1

3D

X dr3½i�

dt
¼ 0 ¼ � �

X
r½i� �

X
�½i�: ð20Þ

Thus,

� ¼

PNN
i¼1 �½i�PNN
i¼1 r½i�

¼
�0h i � 1þ "h ið Þ

rh i
: ð21Þ

Therefore,

dr3½i�

dt
¼

r½i�

rh i
� 1þ "h ið Þ � 1þ "½i�ð Þ

� �
, 1 � i � N: ð22Þ

The behaviour of kgr, s, skew and K for such a case is shown in figure 4.

Figure 2. Rate of ripening kgr, deviation s, skewness skew and kurtosis K versus noise level �
for the noise of concentration.
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4. Conclusions

Thus, accounting for noise during ripening (with a reasonable noise level) produces
PSDs that are much closer to experiment than the LSW theory. The main drawback
of our model is the treatment of the noise terms as constant in time. The calculation
of time correlations for noise will be considered elsewhere.

Figure 4. Rate of ripening kgr, deviation s, skewness skew and kurtosis K versus noise level �
for the noise of �.

Figure 3. Time dependence of the average particle size: (1) �¼ 0.5; (2) �¼ 0.1; (3) �¼ 0.05.

Table 1. Values of s, skew and K from the LSW theory, and experimental and
modelling data.

LSW theory Ni–Ti [11] Ni–Ge [11] Ni–Si [12] Noise of composition

s 0.215 0.294 0.292 0.26–0.29 0.305
skew �0.920 0.308 �0.173 �0.6–0.5 �0.18
K 0.675 �0.216 �0.235 �1.2–0.2 �0.276
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