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Nucleation of intermetallic compounds and of voids at interfaces during
reactive diffusion is treated with account of influence of the flux divergence
in the nucleation regions of the real space as an additional term for drift in
the size space (in Fokker–Planck equation for nucleation). Such approach
enables the construction of effective Gibbs nucleation barrier which may
(in the broad region of parameters) increase to infinity meaning the full
suppression of nucleation, or, by the contrast, decrease assisting the
nucleation. The introduced effective nucleation barriers depend on kinetic
factors – on the ratio of diffusivities in nucleating and in neighboring
phases. Thus, the competition of stable and metastable phases is
reconsidered, as well as nucleation of Kirkendall/Frenkel voids at the
interfaces.

Keywords: nucleation; diffusion; voids; interfaces; intermetallic com-
pounds; kinetics

1. Introduction

Numerous modern technologies (micro- and nano-electronics, photonics, high-
temperature superconductivity etc.) are based on different materials and their
combinations obtained by solid state reactions (SSRs). Moreover, solid state
reactions often determine the mean time to failure (MTF) of the working schemes.
Therefore, investigation of all stages of SSRs in all kinds of times, temperatures and
external forces is important [1–4].

Physicists prefer to treat SSRs with formation of intermetallic compounds
(IMCs) as the first-order phase transitions proceeding in sharply inhomogeneous
open system (contact zone) under gradients of thermodynamic driving forces and
under continuing incoming and outcoming fluxes of matter. Since common first-
order phase transition in initially homogeneous system includes three main stages
(nucleation, independent growth of the just born nuclei, and coarsening), one might
also expect three corresponding stages of SSR: flux-driven nucleation (FDN) in the
concentration gradient, flux-driven individual growth and flux-driven coarsening.
Theories of flux-driven coarsening – Flux-Driven Ripening (FDR) and Flux-Driven
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Grain Growth (FDGG) – had been suggested in [5–7]. Models of ‘‘flux-driven

individual growth’’ (DIGM-like growth of IMC precipitates due to lateral diffusion

along moving interphase interfaces) were proposed in [8–10] and will not be

discussed here.
History of nucleation models is more complicated. Typically, the first (but

wrong) reaction on the idea of considering nucleation in reactive diffusion is the

postulation that nucleation has only negligible impact. Typical critical sizes for

most of intermetallic compounds nuclei range from 1 Å to 1 nm. Nucleation barriers

for heterogeneous nucleation at interfaces are, typically, low, so that nucleation

periods are, typically, short, and formation of the first phase in reactions is typically

not nucleation-controlled, with only a few exceptions [11,12]. On the other hand,

reactive diffusion in thin film couples demonstrates sequential phase formation,

instead of simultaneous growth [1,2,4,11,12]. It means that, contrary to bulk case, in

thin film case and in nanosystems some phases are suppressed so that they may have

no chance to appear at all. To predict the time-dependent observed phase spectrum

of such system, we do not need absolute values of nucleation periods, but instead

their ratios. This task appeared to be complicated, and so far was solved only

partially. Detailed analysis of nucleation thermodynamics and simplified approach

to nucleation kinetics in diffusion zone was made in [13–24] and reviewed in [4].

Main idea of FDN. We will demonstrate below that external fluxes may assist

nucleation if their divergence is negative, and may suppress nucleation if divergence

is positive. Qualitatively, it looks obvious. Divergence means disbalance of outgoing

and incoming fluxes at the surface of elemental volume divided by the size of this

volume. Then

dn=dtð Þ
��external¼ �div Jdiffus

� �
� V nucl
� �

: ð1Þ

If divergence is negative, incoming flux is larger than outgoing one. So, in this

case the flux divergence should help the growth of even subcritical embryon. So, one

may expect that, under otherwise constant conditions, nucleation should happen first

in the place with maximal (by absolute value) negative flux divergence, meaning, in

case of Fick’s law, the maximal positive second spatial derivative of concentration.

Classical nucleation in terms of attachment and detachment frequencies. At first, we

shortly remind to classical nucleation theory by considering formation of a spherical

nucleus of an IMC in initially homogeneous supersaturated solution of B in A. We

assume that nature ‘‘takes care’’ about stoichiometry (atomic fraction c1 of B in IMC

remains constant). Dependence of system’s Gibbs potential change on the number of

atoms n in the embryo/nucleus is

DGðnÞ ¼ �nDgþ � � 4�r20n
2=3 ð2Þ

(r0 � 3�= 4�ð Þð Þ
1=3, � – atomic volume, � – the interfacial energy per unit area).

The bulk driving force per atom is

Dg ¼ kT ln C=Ceq

� �
: ð3Þ
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C and Ceq are the B atomic fractions in supersaturated solution and at

equilibrium with IMC. Critical size and nucleation barrier are found from extremum

condition

ncr ¼
4�

3�

2��

Dg

� �3

, G� ¼
4��

3

2��

Dg

� �2

: ð4Þ

Overcoming the nucleation barrier is a stochastic process consisting of random

attachments and detachments of atoms, �þ, �� being the frequencies of these events.

Their combinations � ¼ �þ þ ��ð Þ=2, D� ¼ �þ � �� are often used. The first

combination is a diffusivity (rate of random walk) of clusters in the size space, the

second combination is a drift velocity of clusters: for subcritical clusters D�5 0, for

overcritical nucleis D�4 0. The flux of clusters in the size space is given by

combination of the diffusion and drift terms:

j ðnÞ ¼ D� � f ðnÞ � ��
@f

@n
ð5Þ

with f ðnÞ being the number of clusters (per unit volume) containing n atoms.

In equilibrium case this flux is zero, and f is a Boltzmann distribution

feqðnÞ ¼ const � exp �DG nð Þ=kTð Þ: ð6Þ

Substituting equilibrium distribution into zero flux condition, one gets

interrelation between the drift and diffusion terms in size space which is identical

with Nernst–Einstein relation between mobility and diffusivity in usual space:

D� nð Þ ¼ �
�� nð Þ

kT

@DG
@n

: ð7Þ

It is well-known [25] that in the case of diffusion-controlled nucleation in a closed

system, the drift term not far from the critical size ( �nj j � n� ncrj j � ncr) is

D�internal ffi
4�D�

c1�

n

ncr

� �1=3

�1

 !
ffi

4�D�

3c1�ncr
�n, ð8Þ

and the diffusion term in size space is

�� nð Þ ¼ 3
ceqD

c1r
2
0

n1=3: ð9Þ

In Equation (8), � ¼ 2��
kT Ceq, D is the diffusion coefficient of B in the dilute

solution. If nucleation is interface controlled, then �� nð Þ is proportional to n2=3 instead

of n1=3 [26].

Account of external flux divergence. If nucleation proceeds in the field of external

fluxes with nonzero divergence, the drift term in the size space is changed:

D�total ffi D�internal þ
dn

dt

����external¼ D�internal þ D�external: ð10Þ
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From kinetic point of view, ability of precipitate to grow or to shrink (to be

overcritical or subcritical) is determined by the sign of drift velocity. In the case

of a closed system, thermodynamic and kinetic approaches give the same result –

zero drift corresponds to zero of Gibbs potential derivative. If the system has a

global distribution of fluxes, thermodynamic and kinetic approaches give different

results [18]: a thermodynamically unstable embryo may survive and grow, if the

second term at the right side of Equation (10) is positive and larger than the

absolute value of negative first term (D�internal) – Flux-Assisted Nucleation (FAN),

nucleation barrier decreased. Vice versa, if second term in Equation (18) is

negative then even ‘‘thermodynamically viable’’ nuclei can be suppressed – Flux-

Suppressed Nucleation (FSN), nucleation barrier increased. In general, we will

call this situation FDN. It seems convenient to introduce an effective Gibbs

potential change taking into account the additional ‘‘external’’ shift term. Indeed,

in the absence of external flux divergence in usual space the equilibrium

distribution of clusters in size space is given by Equation (6) and corresponds

to zero flux in the size space. If the flux divergence in usual space is not zero,

then the condition of zero flux in size space leads to another distribution

f0ðnÞ 6¼ feqðnÞ,

D�total

��
¼
@ ln f0
@n

,
D�internal

��
¼
@ ln feq
@n

: ð11Þ

Combining Equation (11) one gets

@ ln f0=feq
� �
@n

¼
D�total � D�internal

��
¼

D�external

��
: ð12Þ

If the external drift term vanishes at size n tending to zero (and we will treat only

such examples), one can conclude that external influence for n tending to zero,

should be negligible, so that limn!0 f0=feq
� �

¼ 1, and, respectively,

limn!0 ln f0=feq
� �

¼ 0. Then

ln f0=feq
� �

¼

Z n

0

D�external n0ð Þ
�� n0ð Þ

dn0, f0 nð Þ ¼ feq nð Þ exp

Z n

0

D�external n0ð Þ
�� n0ð Þ

dn0
� �

: ð13Þ

Taking into account Equation (6), we can represent zero-flux distribution as

f0ðnÞ ¼ const � exp �DGeff nð Þ=kT
� �

ð14Þ

with newly introduced effective Gibbs potential change

DGeff nð Þ ¼ DG nð Þ � kT

Z n

0

D�external n0ð Þ
�� n0ð Þ

dn0: ð15Þ

Obviously, the maximum of effective Gibbs potential change corresponds to

zero drift – unstable equilibrium, and should be treated as the effective

nucleation barrier. In this letter, we consider two examples of FDN –

suppression of IMC formation and acceleration of Kirkendall/Frenkel void

formation.
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2. FSN of intermediate phase in binary couples

Eventually, we consider nucleation of a second intermediate phase at the interface
between a growing intermediate phase and one of pure components of a diffusion
couple. For that, we will consider first the nucleation and growth of a single IMC at
initial A/B interface and afterwards we will discuss the nucleation of a second phase
at 1/B interface.

2.1. Nucleation and growth of single intermediate phase at initial A/B interface

It is well known (see, for example, [1,27–29], that the growth rate of the compound
i layer of thickness DXi with almost stoichiometric composition ci within narrow
interval Dci growing between practically insoluble components, is equal to

dDXi

dt
¼

1

ci 1� cið Þ

DiDci
DXi þ �i

: ð16Þ

Characteristic length �i accounts for interface barriers. It is related to finite time
needed by an atom to overcome barriers. Less known is the interpretation of the
product DiDci of mean interdiffusivity and equilibrium phase concentration range.
Actually, one should write DiDci ¼

R ciR
ciL

~D cð Þdc (Wagner diffusivity) with the Darken
interdiffusion coefficient [4,28]

~D cð Þ ¼ cD�A þ 1� cð ÞD�B
� � c 1� cð Þ

kT

@2g

@c2
, ð17Þ

g – Gibbs free energy per atom, varying to a little extent inside the phase but its first
derivative @g=@c typically, changes drastically, so that the second derivative @2g=@c2

becomes large (correlating with the outstanding stability of IMC). Simple
transformations (using common tangent rule) giveZ cR

cL

~D cð Þdc ¼ D�j
cj 1� cj
� �
kT

@g

@c

����
i,B

�
@g

@c

����
i,A

 !
¼ D�j

cj 1� cj
� �
kT

gB � gj
1� cj

�
gj � gA
cj � 0

� �

¼ D�j
Dgj Aþ B! jð Þ

kT
: ð18Þ

Here D�j – combination of tracer diffusion coefficients averaged over the phase,
D�j � cD�A þ 1� cð ÞD�B, DgiðAþ B! iÞ – thermodynamic driving force (per one
atom) of IMC formation. So, the growth rate can be written as some effective
mobility times driving force:

dDXi

dt
¼

1

ci 1� cið Þ

D�i
DXi þ �i

DgiðAþ B! iÞ

kT
: ð19Þ

We will reorganize Equation (19) to the form suitable for nucleation theory. Let
Sj be the area of interfaces i/A and i/B, so that n ¼ SjDXj=� is the number of atoms
of IMC. On the other hand, for far overcritical volumes of IMC (when one can
neglect surface energy),

Dgj Aþ B! jð Þ ¼ �@G=@n: ð20Þ
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Then the rate of uptake of atoms into the growing IMC phase is

dn

dt
¼

D�i =�

ci 1� cið Þ

Si

DXi þ �i

� �
�

1

kT

@G

@n

� �
¼ ��i � �

1

kT

@G

@n

� �
¼ D�: ð21Þ

The coefficient ��i �
D�i =�

ci 1� cið Þ

Si

DXi þ �i

� �
ð22Þ

can be well used as an average attachment/detachment frequency in Fokker–Planck

approach.
Now consider the initial stage of IMC formation – its nucleation, which appears

most probably at the interface (but sometimes not [30]). If solubilities of A in B and

of B in A can be neglected, only interdiffusion inside newly born nucleus determines

the rate of its growth or elimination. For the sake of simplicity we take nucleus shape

to be disc-like with radius R and thickness h ¼ h� þ h�. The aspect ratio ’ ¼ h=R
should be optimized. The Gibbs free energy change due to nucleation of such disc-

like particle is

DG n, ’ð Þ ¼ �nDgi þWsurf n, ’ð Þ, ð23Þ

Wsurf n,’ð Þ ¼ ��i þ ��i � ���
� �

�R2 þ ��ih� þ ��ih�
� �

2�R, ð24Þ

h� ¼
c� � ci
c� � c�

h, h� ¼
ci � c�
c� � c�

h ð from conservation of matterÞ, ð25Þ

R ¼ �=�ð Þ
1=3n1=3’�1=3, DXi ¼ h ¼ �=�ð Þ

1=3n1=3’2=3: ð26Þ

Optimization of surface energy gives

’opt ¼
��iþ ��i� ���

c��ci
c��c�

��iþ
ci�c�
c��c�

��i
�
D�
�i

, D� � ��iþ ��i� ���, �i �
c�� ci
c�� c�

��i þ
ci� c�
c�� c�

��i,

ð27Þ

Wsurf n, ’opt
� �

¼ ~�s0n
2=3, ~� ¼ D��2i

� �1=3
, s0 ¼ 3 ��2

� �1=3
: ð28Þ

Thus, the drift in the size space can be written by analogy to Equation (21) with

additional account of the surface term in Gibbs energy,

�
@DG
@n
¼ Dgi �

@Wsurf n,’optð Þ

@n
¼ Dgi � 2 �D��2i �2

� �1=3
n�1=3: ð29Þ

D� ¼ ��i �
Dgi
kT
�
2 �D��2i �2
� �1=3

kTn1=3

 !
: ð30Þ
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The critical size is found from zero conditions for drift or for derivative of Gibbs

free energy

ncr ¼ 2 ~�s0= 3Dgð Þð Þ
3: ð31Þ

At diffusion-controlled nucleation (�i ¼ 0)

��i �
D�i

ci 1� cið Þ�

Si

DXi þ 0
¼

D�i
ci 1� cið Þ

�

�

� �2=3 �i
D�

� �4=3
 !

n1=3: ð32Þ

2.2. FDN

Before formulating the main kinetic equation, note that the driving force to form the
second IMC by reaction of the first and B is less than that of the direct formation

from almost pure A and B (Figure 1). Therefore, formula for Wagner diffusivity
differs from Equation (18):Z cR

cL

~D cð Þdc¼D�2
c2 1� c2ð Þ

kT

gB� g2
1� c2

�
g2� g1
c2� c1

� �
¼D�2

c2 1� c1ð Þ

c2� c1

Dg2 1þB! 2ð Þ

kT
: ð33Þ

For the nucleation of IMC 2 between already growing layer of IMC 1 and pure B,
one may use known growth Equations (21)–(24) with modified driving force like in

Equation (29):

dDX2

dt
¼

1� c1ð Þ
2c2

c2 � c1ð Þ
2 1� c2ð Þ

D�2
Dx2

Dg1þB!2

kT
�
2

3
~�s0n

�1=3
2

� �
�

1

c2 � c1

D1Dc1
Dx1

: ð34Þ

Figure 1. Nucleation of IMC 2 at the interface between IMC 1 and B.
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In terms of number of atoms in the disc-like nucleus the kinetic equations are

D�2 ¼
dn2
dt
¼

S2dDX2

�dt
¼ ��2

Dg1þB!2

kT
�
2 ~�s0n

�1=3
2

3kT

 !
�
D1Dc1
DX1

�=�ð Þ
1=3

c2 � c1

�i
D�

� �2=3

n2=32 ,

ð35Þ

where

�2 ¼
1� c1ð Þ

2c2

c2 � c1ð Þ
2 1� c2ð Þ

�

�

� �2=3 �i
D�

� �4=3

D�2n
1=3
2 : ð36Þ

Thus,

�kT
D�2
��2
¼ �Dg1þB!2 þ

2 ~�s0

3n1=32

þ kT
�
�

� �1=3
D1Dc1

D�2DX1

1� c2ð Þ c2 � c1ð Þ
D�
�i

� �2=3
1� c1ð Þ

2c2
n1=32 : ð37Þ

So, we can now construct an effective Gibbs nucleation barrier

DGeff n2ð Þ ¼ DG n2ð Þ � kT

Z n

0

D�external2 n0ð Þ

��2 n0ð Þ
dn0

¼ �Dg1þB!2x
3 þ ~�s0x

2 þ kT
�=�ð Þ

1=3D1Dc1
D�2Dx1

3 1� c2ð Þ c2 � c1ð Þ
D�
�i

� �2=3
4 1� c1ð Þ

2c2
x4

¼ �a3x
3 þ a2x

2 þ a4x
4, x � n1=3: ð38Þ

Note that, formally, Equation (38) is formally similar to dependence obtained in
[19] in the frame of nucleation thermodynamics at interface in the sharp
concentration gradient – it also contains the fourth power of linear size, in addition
to standard third and second powers, but now it depends on diffusivities ratio. Here
the last term is positive meaning additional height of nucleation barrier (FSN).
If a4 4 a�4 ¼ 9a23= 32a2ð Þ this barrier tends to infinity so that nucleation is impossible.
Nucleation becomes possible when a4 5 a�4, or

DX1 4DXcrossover
1 ¼

�D�1DgAþB!1

�D�2 Dg1þB!2ð Þ
2

�

�

� �1=3
1� c2ð Þ c2 � c1ð Þ8 ~�s0 D�=�ið Þ

2=3

3 1� c1ð Þ
2c2

: ð39Þ

Equation (39) evidently can give cross-over thickness of the suppressing phase
like tens or hundreds of nanometers. Indeed, at reasonable parameters D�1=D

�
2 ¼ 10,

c1 ¼ 1=3, c2 ¼ 1=2, � ¼ 10�29 m3 Dg jAþB!1 ¼ 10�19 J=atom, Dg
��
1þB!2

¼

2 � 10�20 J=atom, �i ¼ 1 J=m2, D� ¼ 0:5 J=m2 one gets DXcrossover
1 ¼ 148 nm:

Change of effective nucleation barrier with changing (from 10–300 nm) width of
neighboring growing phase layer 1 is illustrated at Figure 2 for just indicated
parameters.

3. Flux-assisted void nucleation at the interface of growing intermetallic compound

Let us finally consider the Kirkendall (actually Frenkel) voiding in the process of
growth of an IMC 1 between two mutually almost insoluble components [4,27].
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Sample geometry is: A – 1L (left interface) – 1R (right interface) – B. Let B is much

faster, D�A=D
�
B � 1. Then the vacancy flux will be directed from 1L to 1R. In the case

of poorly working vacancy sinks, one will observe void nucleation and growth at the

moving right boundary. Let us take for simplicity that the nuclei of voids have

hemispherical shape with their basis at the interface. Then, the change of Gibbs free

energy due to nucleation is

DG ¼ �
2�R3

3�

� �
� kT ln

CV

Ceq
V

� �
þ �1V2�R

2 þ �BV � �1Bð Þ�R2 ¼ �n � DgV þ �ef2�r21n
2=3:

ð40Þ

Here n ¼ 2�R3= 3�ð Þ – number of vacancies collected in hemispherical void

(neglecting relaxation), r1 � 3�=2�ð Þ
1=3 characteristic atomic size (R ¼ r1 � n

1=3),

DgV ¼ kT ln CV=C
eq
V

� �
, �ef ¼ �1V þ �BV � �1Bð Þ=2 – ‘‘effective surface tension’’,

�1V, �BV, �1B – surface energies per unit area for interfaces IMC/void, B-phase/

void, B-phase/IMC, respectively. In full analogy with Equations (8) and (9), we have

for the hemisphere

��hemisphere nð Þ ¼
1

2
��sphere 2nð Þ ¼ 3

ceqV DV

r21
n1=3, ð41Þ

D�internal ¼ �
��hemisphere

kT

@DG
@n
ffi

��hemisphere

kT
DgV �

4�r21�
ef

3n1=3

� �
: ð42Þ

Now, we add the additional drift term due to external flux of vacancies. We

consider here the most simple case that all vacancy flux goes into the void and does

Figure 2. (a) Effective nucleation barriers (in J) as the functions of cubic root of atoms
number in phase 2 embryon/nucleus, at various widths of already growing phase layer 1 (curve
1–10 nm, 2–20 nm, 3–30 nm, 4–70 nm, 5–300 nm). (b) shows the details of curves behavior near
the top of ordinary nucleation barrier. Parameters are indicated in the text after Equation (39).
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not go further. Then

dn

dt

����external¼ JV�R
2 � 0 ¼

D�B �D�A
�

c1 1� c1ð Þ

kT

@2g

@c2B

DcB
DX1

�r21n
2=3 �

D�B
�

Dg1=kTð Þ

DX1
�r21n

2=3:

ð43Þ

Here Dg1 is a driving force of IMC formation per one atom and DX1 – thickness.

Thus,

D�total ¼
��hemisphere

kT
DgV �

4�r21�
ef

3n1=3

� �
þ
D�B
�

Dg1=kTð Þ

DX1
�r20n

2=3: ð44Þ

The ‘‘kinetically critical’’ size corresponds to D�total ¼ 0. Let supersaturation of

vacancies tends to zero, so that DgV ! 0. Then the condition D�total ¼ 0 gives (with

ceqV DV � D�B):

Rkinetic
cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�ef�DX1=Dg1

p
: ð45Þ

For reasonable parameters ( ~� ¼ 1 J=m2, � ¼ 10�29 m3, Dg ¼
10�19 J=atom, Dx1 ¼ 10�8 m) one obtains Rkinetic

cr ¼ 2 � 10�9 m, which means that

even at zero supersaturation the void nucleation is still possible due to external flux.

We also can introduce the effective nucleation barrier,

DGeff nð Þ ¼ DG nð Þ þ kT �

Z n

0

D�ext n0ð Þ
�� n0ð Þ

dn0 ¼ DG nð Þ �
�r40
c1�

Dg1
DX1

� �
n4=3: ð46Þ

Thus, the change (decrease) of effective nucleation barrier in units of kT is

DGeff nð Þ � DG nð Þ

kT
¼ �

�r40
c1�

Dg=kT
Dx

� �
n4=3 � 6 � n4=3,

which amounts to only 12 even at n¼ 8 vacancies in the void. Once more, we can see

that in this situation the FAN can play a decisive role.
To summarize, divergence of external fluxes in the nucleation region (often

influenced by the nucleation itself) leads to additional positive or negative drift terms

for nucleus migration in the size space and in consequence to an effective nucleation

barrier, which is usually time-dependent and may furthermore depend on the ratio of

diffusion characteristics. We suggest calling this phenomenon FDN including FAN

as well as FSN. Detailed applications of suggested approach to old problem of phase

competition in thin film reactions and to recently discovered point contact reactions

[31,32] will be presented elsewhere.
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