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Abstract
This work, which concerns the e� ect of unidirectional sharp concentration

gradients on the nucleation of intermetallics in amorphous layers or in
supersaturated solid solutions, is focused on the embryo shape. The study leads
to a new analysis of the critical concentration gradient beyond which the
nucleation driving force is suppressed. Owing to the ¯ uctuations in the embryo
shape, it is shown that the minimization of the thermodynamic potential leading
to the equilibrium aspect ratio of a parallelepiped-shaped embryo is only possible
above a certain value of the concentration gradient. Beyond such a concentration
gradient, the embryo aspect ratio is found to deviate signi® cantly from that
given by the Wul� conditions. Application is presented to the nucleation of
the compounds Al3Ni and Ni10Zr7 in a supersaturaed Al± Ni solid solution and
in a Ni± Zr amorphous layer respectively.

§ 1. Introduction

The e� ect of unidirectional sharp concentration gradients on the nucleation of
intermetallic compounds either in amorphous layers obtained by solid-state reaction
or in supersaturated solid solution has been studied and discussed since the begin-
ning of the 1990s (DesreÂ and Yavari 1990, Gusak 1990, DesreÂ 1991, Hodaj and DesreÂ
1996). Firstly it has been shown, from a pure thermodynamic approach that, under
certain conditions, there is a critical concentration gradient beyond which inter-
metallic nucleation is suppressed. One of the conclusions of these studies is that
the existence of such a critical gradient depends upon di� erent possible mechanisms
of formation of the embryos. These are as follows.

Mechanism I is polymorphic nucleation with frozen di� usion (Gusak 1990),
which means that the expected intermetallic embryo would conserve the same con-
centration gradient as in the parent phase.

Mechanism II is nucleation by transverse di� usion (DesreÂ 1991), where the
embryo is fed by di� usion in a direction perpendicular to the unidirectional concen-
tration gradient.

Mechanism III is nucleation by total mixing of atomic layers in the nucleation
zone (Hodaj and DesreÂ 1996).
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Mechanism IV is nucleation by a combination of mixing mechanism and trans-
verse di� usion (Hodaj and DesreÂ 1996).

After some algebra and in the simple case where the embryo is of cubic shape of
dimension 2r, with no anisotropy of the interface energy, the Gibbs energy asso-
ciated with the formation of an embryo is given by the following equation:

D Gn = 8q D Gpc - p*2

2( a - a Â )( ) r3 + 24s r2 + g i( Ñ c)2r5. (1)

D Gpc is the polymorphic Gibbs energy associated with the transformation from
parent phase to intermetallic. q is the number of moles of atoms per unit volume;
s is the interfacial free energy; p* = ( ¶ ( D Gs) /¶ c)c* is the slope of the tangent to the
Gibbs energy of formation of the parent phase D Gs against concentration at c = c*
where the Gibbs energy D Gc of formation of the compound is a minimum.
a = ( ¶ 2( D Gs) /¶ c2)c* and a Â = ( ¶ 2( D Gc) /¶ c2)c* are the Gibbs energy stabilities of
the parent phase and of the compound respectively. g i is a coe� cient whose expres-
sion di� ers according to the mechanism of the embryo formation: g 1 = 4

3
q ( a Â - a )

for the mechanism I (Gusak 1990); g 2 = 4
3 q a (1 - a /a Â ) for mechanism II (DesreÂ

1991); g 3 = - 4
3 q a for mechanism III (Hodaj and DesreÂ 1996); g 4 =

4
3 q a [(1 - a /a Â )(1 - d 3) - d 3] for mechanism IV (Hodaj and DesreÂ 1996). The para-
meter d which appears in g 4 is such that 2d r represents the distance over which the
mixing e� ect by interdi� usion through the ® rst-formed ordered atomic planes acts in
the ® rst stage of the nucleus formation.

It must be pointed out that, in mechanisms I and II, g i is a positive quantity;
this means that the Gibbs energy of formation is signi® cantly increased by sharp
concentration gradients (greater than 105 cm- 1). Beyond this critical concentration
gradient, nucleation becomes thermodynamically impossible. In mechanism III
where mixing is operating at the embryo scale, g 3 is a negative quantity; conse-
quently, the concentration gradient does not suppress the possibility of nucleation.
Furthermore, the nucleation driving force is, in this case, increased by a sharp
concentration gradient.

g 4 can be either positive or negative depending on the extent of the mixing
mechanism measured by d . In the case of a cubic-shaped embryo, it has been
shown that g 4 remains positive provided that Ds /Dc <4d 2

0 where Ds /Dc is the
ratio of the di� usion coe� cient Ds in the disordered parent phase to the di� usion
coe� cient Dc in the compound. d 0 is the value of d which gives g 4 = 0. As in general
the di� usivity in an ordered phase is expected to be signi® cantly smaller than in a
disordered phase the previous condition for g 4 >0 is not restrictive. Consequently a
critical concentration gradient can be de® ned in mechanism IV. Let us recall that this
latter case which results from a combination of mechanisms II and III is expected to
be more representative, from a physical point of view, of the actual construction of
the embryo. It can be added that the extent of the mixing process, measured by d ,
does not in¯ uence signi® cantly the value of the critical gradient. As an example,
when d varies from 0 to 0.5 this yields only an increase in the critical gradient of
about 15% (for a cubic embryo).

As we are concerned with nucleation of intermetallics and in order to be more
general and more rigorous, it is necessary to take into account the anisotropy of the
interfacial energy and the eventual change in the embryo shape during its construc-
tion. A study of the e� ect of nucleus shape in a concentration gradient has already
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been proposed (Gusak et al. 1991) but for particular conditions such as the case of
frozen di� usion (mechanism I).

§ 2. Effect of the embryo shape on nucleation under sharp
concentration gradients

For simplicity and in order to study the speci® c e� ect of a unidirectional con-
centration gradient on intermetallic nucleation, a parallelepiped-shaped embryo of
dimension 2r in the x direction and 2h in the y and z directions has been chosen
(® gure 1). The general form of the Gibbs energy associated with the formation of the
nucleus of volume v = 8rh2 in a concentration gradient denoted Ñ c can be written

D Gn = q D Gpc - p*2

2( a - a Â )( ) v + 2( s x u 2/3 + 2s z u - 1/3)v2 /3 + g i
( Ñ c)2 u - 4/3

32
v5 /3.

(2)

Equation (2) contains a volume term corresponding to the driving force of nuclea-
tion, a positive term containing the interfacial energies and a term owing to the
gradient of concentration whose sign is given by g i. u = h/r is the aspect ratio of
the embryo, s x is the interface free energy in the x direction and s z = s y are the
interface free energies in the y and z directions.

It must be pointed out that, when the subcritical embryo is constrained to be a
Wul� crystal, the aspect ratio u is given by the interfacial anisotropy factor s which
in the case of the present model is s = s z /s x. According to the di� erent cases of
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Figure 1. Parallelepiped-shaped intermetallic phase nucleus in a solid-solution layer; r is
parallel to concentration gradient along x.



application, it will be shown that thermodynamics suggest signi® cant deviation from
the value of the aspect ratio given by the Wul� condition.

In order to study from a pure thermodynamic approach the possible evolution
of the aspect ratio of a growing embryo, we search for a minimum of D Gn against
u at constant volume. In the following the more probable case g i >0 is considered
(the less probable case g i <0 is treated in another study (Gusak et al. 1998)).
When g i >0 a critical concentration gradient Ñ cc beyond which nucleation is sup-
pressed can be de® ned. Furthermore a minimum of D Gn(( ¶ ( D Gn) /¶ u )v = 0 and
( ¶ 2( D Gn) /¶ u 2)v >0) is obtained when u = u m with

u m = s[ 1
2

+
1
4

+
v
v*( ) 1 /2] , (3)

where

v* =
32s xs2

g i

1
( Ñ c)2 . (4)

For a given embryo volume, v/v* increases with increasing Ñ c. As a consequence,
for sharp Ñ c such as those considered in the following application, the approxima-
tion v/v* @ 1 is justi® ed when v >vc, where vc is the critical volume of the embryo.
This approximation leads to u m = s(v/v*)1 /2. Substituting u m in equation (2), one
obtains

D Gn = [ q ( D Gpc - p*2

2( a - a Â )) +
3
2

s x

2( )
2 /3

g 1 /3( Ñ c)2 /3] v

+ 8s z
s x

2g( ) 1/6
( Ñ c)- 1 /3v1/2. (5)

It can be shown that D Gn remains positive whatever the values of v when Ñ c > Ñ cc
where

Ñ cc =
2
s x

2q [- D Gpc + p*2 /2( a - a Â )]
3g 1 /3( )

3 /2

. (6)

This means that intermetallic nucleation is not thermodynamically possible for
Ñ c > Ñ cc. It is found that, when Ñ c = Ñ cc, D Gn presents a maximum at
v = vc = ¥ . Consequently and as v* remains ® nite, equation (6) for Ñ cc can be
considered as exact. It must be added that, when Ñ c < Ñ cc, nucleation can still be
suppressed from kinetic reasons.

It appears from equations (3) and (4) that, formally, when Ñ c = 0, one ® nds
u m = s. This means that the absence of a concentration gradient leads to an aspect
ratio independent of the volume of the embryo and equal to the anisotropy factor s.
Starting from this formal result the following question arises: in what Ñ c range is the
aspect ratio expected to deviate signi® cantly from the Wul� condition? On the basis
of the previous results, a deeper insight into the meaning of the minimization of the
thermodynamic potential D Gn against the aspect ratio at constant volume can be
obtained from an evaluation of the ¯ uctuations of the aspect ratio u around s. Such
a study is justi® ed by the fact that, here, thermodynamics are applied to systems (the
embryos) of nanometre scale dimensions.
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Considering that the Wul� condition u = s corresponds to a minimum of
the total interface free energy of the parallelepiped embryo, for a given volume,
the calculation of the mean square deviation of u - s, whose details are given in
appendix A, leads to

f = [k ( u - s)2 l ]1 /2

s
=

(3kT /4s x)1/2

(sv)1/3 . (7)

Applying equation (7) with T = 600K, s x = 0.2 J m- 2, s = 1.5 and v = 10- 21 cm3,
one obtains f = 0.15.

As mentioned before, such a signi® cant relative amount of aspect ratio ¯ uctua-
tion of 15%is not surprising owing to the smallness of the system constituted by the
embryo. Note that, formally, these ¯ uctuations become negligible for large embryo
volumes (v @ v*) .

This previous evaluation of the aspect ratio ¯ uctuations allows us to de® ne under
what conditions the value of u = u m which minimizes D Gn, for a given embryo
volume, is such that ( u m - s) /s is smaller than [k ( u - s)2 l ]1/2 /s. In fact, when

u m - s
s < [k ( u - s)2 l ]1/2

s , (8)

the corresponding value of u m, resulting from the minimization of the thermo-
dynamic potential D Gn is not signi® cant since such a value must be counted
among the ¯ uctuation states around s. From equations (3), (7) and (8), the condition
expressing the validity of the thermodynamic potential minimization is given by

v
v* >

(3kT /4s x)
1 /2

(sv)1 /3 1 +
(3kT /4s x)

1 /2

(sv)1 /3( ) . (9)

Taking account of equation (4) the previous condition can be expressed by making
explicit the concentration gradient

Ñ c > Ñ c*, (10)

with

Ñ c* =
32s x

g
(3kT /4s x)

1 /2s5/3

v4 /3 1 +
(3kT /4s x)

1 /2

(sv)1 /3( )[ ]
1 /2

. (11)

The condition (10) means that, when the concentration gradient is such that
Ñ c < Ñ c*, the minimization of the thermodynamic potential in order to determine
the aspect ratio u m becomes insigni® cant. In other words, when Ñ c < Ñ c*, the
aspect ratio can be considered as given by the Wul� condition. Two examples of
application of the previous approach are presented in the following. They concern
® rstly the nucleation of intermetallics in a supersaturated Al± Ni solid solution and
secondly the nucleation of intermetallics in an amorphous layer of Ni± Zr obtained
by solid-state reaction.

§ 3. Application

Recent work on kinetic reactions in polycrystalline Al± Ni multilayers has
demonstrated that interdi� usion between layers leads to supersaturated solid solu-
tions with sharp concentration gradients (Edelstein et al. 1994). In the framework of
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the previous model, where the embryo is parallelepiped shaped, the Gibbs energy
associated with the nucleation of the compound Al3Ni in the concentration gradient
Ñ c, which is supposed to be constant and unidirectional, is found to have the form

1019 D Gn = - 16.8v + 6( u
2/3
m + 2u - 1 /3

m )v2 /3 + 6.2 ´ 10- 18 u - 4 /3
m v5/3( Ñ c)2, (12)

with

u m = 0.5 + [0.25 + 2.1 ´ 10- 18v( Ñ c)2]1/2,
where D Gn is in joules, Ñ c in reciprocal metres and v in cubic nanometres. Equation
(12) has been obtained for T = 600K with the following thermodynamic data
(Dupin 1995): a = 1.36 ´ 105 J mol- 1, a Â = ¥ , D Gpc = - 1.53 ´ 104 J mol- 1,
q = 1.1 ´ 105 mol m- 3 and s = 0.3 J m- 2. As we are mostly interested in the devia-
tion of the aspect ratio u m from s we have taken for simplicity s = 1. D Gn is shown in
® gure 2 against the volume v of the embryo for di� erent values of Ñ c. On each curve
some values of the corresponding aspect ratios are reported. It is seen that the
maximum of D Gn which is the critical Gibbs energy barrier of nucleation increases
with increasing concentration gradient.

The critical nucleation barrier D Gn (1019 J), the corresponding critical volume
vc (nm3) and the aspect ratio u m,c at v = vc are shown in ® gure 3 against the
concentration gradient Ñ c. Application of equations (6) and (11) yields
Ñ cc = 1.77 ´ 109 m- 1 and Ñ c* = 5 ´ 108 m- 1 respectively.

The second application concerns the potency of intermetallic nucleation of the
compound Ni10Zr7 in an amorphous binary metallic layer Ni± Zr formed by solid-
state reaction between polycrystalline Ni and Zr layers. By application of equation
(2) and using equation (3), the Gibbs energy of nucleation is of the form

1019 D Gn = - 4.7v + 3( u
2 /3
m + 2u - 1/3

m )v2 /3 + 2.1 ´ 10- 17 u - 4/3
m v5 /3( Ñ c)2, (13)
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Figure 2. Gibbs energy D Gn of nucleation of Al3Ni against the volume v of the embryo for
di� erent concentration gradients. Corresponding values of the aspect ratio u m are
reported on each curve D Gn(v) .



with

u m = 0.5 + [0.25 + 1.4 ´ 10- 17v( Ñ c)2]1 /2,
where D Gn is in joules, Ñ c in reciprocal metres and v in cubic nanometres. Equation
(13) has been obtained for T = 600K from the following data (Hena� et al. 1987):
a = 4.68 ´ 105 J mol- 1, a Â = ¥ , D Gpc = - 4.5 ´ 10- 3 J mol- 1, s = 0.15 J m- 2,
q = 1.05 ´ 105 mol m- 3 and s = 1. D Gn is shown in ® gure 4 against the volume
of the embryo for di� erent Ñ c. The critical nucleation barrier D Gc (1019 J), the
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Figure 3. Curves representing the critical nucleation barrier D Gc, the corresponding critical
embryo volume and the aspect ratio u m,c at v = vc against concentration gradient Ñ c
for the Al3Ni embryo.

Figure 4. Gibbs energy D Gn of nucleation of Ni10Zr7 against the volume v of the embryo for
di� erent concentration gradients. Corresponding values of the aspect ratio u m are
reported on each curve of D Gn(v) .



corresponding critical volume vc (nm3) and the aspect ratio u m,c at v = vc given in
® gure 5 against the concentration gradient. In this case, one ® nds that
Ñ cc = 2.91 ´ 108 m- 1 and Ñ c* = 7.5 ´ 107 m- 1 respectively.

§ 4. Discussion and conclusion

It must be noted at ® rst that, in both applications, the e� ect of Ñ c becomes
signi® cant in the Gibbs energy nucleation barrier only for sharp concentration
gradients. More speci® cally, it is only when a certain order of magnitude of the
concentration gradient is attained (109 m- 1 for the Al3Ni compound and 108 m- 1

for the Ni10Zr7) that a signi® cant e� ect of the concentration gradient on the nuclea-
tion barrier is observed. A further increase in Ñ c is expected to suppress intermetallic
nucleation ® rst for a kinetic reason and then for a thermodynamic reason when
Ñ c > Ñ cc. It must be pointed out that the order of magnitude of the critical gradient
is mostly dependent on the value of the polymorphic Gibbs energy D Gpc of trans-
formation and on the interface energy.

Focusing on the central aspect of the present work, devoted to the embryo shape,
it has been shown that the concentration gradient makes the embryo shape deviate
signi® cantly from the Wul� condition only when Ñ c is greater than a limit value
given by equation (11). This result is due to signi® cant embryo shape ¯ uctuations
around the Wul� crystal shape when subjected to smaller Ñ c which render the
minimization of the thermodynamic potential inoperative. This is why the curves
which represent u m against Ñ c in ® gures 3 and 5 are only given for Ñ c > Ñ c*.

Furthermore in the region where Ñ c > Ñ c*, it is found that the theoretical
critical gradient Ñ cc is increased when the aspect ratio is taken into account (in
comparison with the case when u = s).

Finally, it must be pointed out that the critical volume of the embryo to be
considered in the previous applications must be in agreement with the classical
kinetic theory of nucleation. More speci® cally, the critical embryo volume vc must
be such that the corresponding Gibbs energy barrier of nucleation is of the order
of 60kT (5 ´ 10- 19 J at T = 600K). In fact, 60kT is an energy barrier allowing a
detectable nucleation rate in the absence of faceting (Johnson et al. 1975). Thus it
appears that 60kT is an overestimated value for the present application where the
embryo is modelled with a parallelepiped.

A PPENDIX A
Following Callen (1960), the probability of ¯ uctuations in the extensive variables

denoted X0,X1,. . . ,Xn of a small system in contact with its surroundings is given by
the following relation:

w = Cexp ^S - å
n

0

^U i - S[U 0,. . . , U n]( ) / k[ ] (A 1)

where ^S and ^Xi are the instantaneous entropy and any extensive parameters respec-
tively, k is Boltzmann’s constant, u i are the intensive variables of the reservoir (the
surroundings in the present case), S[u 0,. . . , u n] is the maximum value of
^S - å n

0 U i
^Xi identical with the Legendre transform of the equilibrium entropy,

and C is a constant.
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The application of equation (A 1) to the case of area ¯ uctuations, for ® xed
temperature and volume of the embryo, yields

w = Cexp - F̂ - k Fl
kT( ) , (A 2)

where F̂ = Û - T ^S is the instantaneous free energy associated with the area between
the embryo and the parent phase. k Fl is the corresponding minimum of the free
energy surface. For an embryo presenting n facets, ^F - k Fl = D F is of the form
D F = å n

1(
^Ai - k Ai l ) s i where ^Ai is the instantaneous area of facet i of free energy s i.

When applied to a parallelepiped embryo, the expression for D F becomes merely

D F = 2v2 /3 s x[2s(s- 1/3 - u - 1/3) + (s2/3 - u 2/3)]. (A 3)

D F presents a minimum against u for u = s provided that ( u - s) /s <3. This is not
a restrictive condition as the relative aspect ratio [k ( u - s)2 l ]1 /2 /s ¯ uctuations are
expected to be much smaller than three as veri® ed in the applications presented in the
text. A development of D F to the second order around s leads to

D F = 4
3 v2/3s- 4/3 s x. (A 4)

From equations (A 2) and (A 4) and after normalization of the probability it follows
that

x =
2v2 /3s- 4 /3 s x

3p kT( )
1 /2

exp - 2v2/3s- 4 /3 s x

3p kT
( u - s)2( ) ,

which gives ® nally

[k ( u - s)2 l ]1 /2

s
=

(3kT /4s x)
1/2

(sv)1 /3 . (A 5)
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