
This article was downloaded by: [University of Grenoble]
On: 07 September 2011, At: 08:33
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Philosophical Magazine
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/tphm20

Heterogeneous nucleation and
depletion effect in nanowire growth
F. Hodaj a , O. Liashenko b , A. Gusak b & Y. Lyashenko b
a SIMaP - UMR CNRS 5266, Grenoble INP - UJF, BP 75, F-38402, Saint
Martin d’Hères, France
b Cherkasy National University, 81 Shevchenko blvd., Cherkasy,
18031, Ukraine

Available online: 07 Sep 2011

To cite this article: F. Hodaj, O. Liashenko, A. Gusak & Y. Lyashenko (2011): Heterogeneous
nucleation and depletion effect in nanowire growth, Philosophical Magazine,
DOI:10.1080/14786435.2011.607142

To link to this article:  http://dx.doi.org/10.1080/14786435.2011.607142

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-
conditions

This article may be used for research, teaching and private study purposes. Any
substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing,
systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or
indirectly in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/tphm20
http://dx.doi.org/10.1080/14786435.2011.607142
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Philosophical Magazine
2011, 1–18, iFirst

Heterogeneous nucleation and depletion effect in nanowire growth

F. Hodaja*, O. Liashenkob, A. Gusakb and Y. Lyashenkob

aSIMaP -UMR CNRS 5266, Grenoble INP -UJF, BP 75, F-38402, Saint Martin
d’Hères, France; bCherkasy National University, 81 Shevchenko blvd.,

Cherkasy, 18031, Ukraine

(Received 9 May 2011; final version received 16 July 2011)

Recent experiments by Ross and co-workers proved the possibility of a
mononuclear regime with heterogeneous nucleation as well as jerky growth
in the vapor–liquid–solid (VLS) process for silicon nanowires. In this work,
a theoretical model is presented which incorporates the effects of (i) a
mononuclear regime with layer by layer growth, (i) heterogeneous
nucleation of each new layer at the edge of a Au–Si droplet, (iii) drop of
supersaturation after each successful nucleation and respective fast layer
growth, (iv) time-dependent nucleation barrier during each new waiting
period and (v) correlation between subsequent waiting periods (non-
Markovian sequence of waiting periods).

Keywords: nucleation; nanowire; modeling; thermodynamics; growth;
step-flow kinetics

1. Introduction

Development of nanotechnologies provides new problems in the theory of phase
transformations – nucleation, growth and coarsening in open nanosystems.

Step-flow kinetics is one of the newest experimentally investigated features of
nanowire growth [1–3] by the vapor–liquid–solid (VLS) method. Nanowires grow by
a rapid increase (few milliseconds) of the nanowire height by the value of one
monoatomic layer with large incubation time (several seconds) between these
increases. It has been shown for the II–VI or III–V compounds where solubility of
one component in the liquid alloy is very low that nucleation statistics is self-
regulated and corresponds to sub-Poissonian distribution of waiting times between
nucleation events [3] (a similar idea was also suggested in [4]). In contrast, the
solubility of Si in Au is very high and one would expect that a self-regulation
mechanism will not work in such systems. Yet, nature may not meet these
expectations (see below).

Growth of sufficiently thin nanowires takes place in the mononuclear regime: for
the growth of one atomic layer of the nanowire it is necessary for one nucleus to
appear [5]. So, here we will limit ourselves to nanosystems in which the nucleation
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events proceed one by one and the probability of simultaneous nucleation and of
coexistence of several nuclei is negligible. Experimental results show that a nucleus
appears on the edge of the nanowire, at the junction of three phases: liquid, solid and
vapor [2]. For Si nanowires grown in an atmosphere of low-pressure disilane it has
been shown that the growth rate is diameter independent [6]. In this case, adsorption
processes on the surface of the liquid droplet make the main contribution to the
growth rate.

The following peculiarities should be taken into account in this case:

(1) ‘Feedback’ via depletion: in a nanovolume even one successful nucleation
and subsequent monolayer growth may cause significant depletion of the
whole nanosystem in one of its components [7], changing the conditions
(driving force) for the next nucleation. In other words, the system should
‘recover’ from a previous nucleation before trying the next one.

(2) Each new nucleation event proceeds in non-steady-state conditions, under
rising concentration of solute supplied by an external flux. So, the time
dependence of the driving force should be taken into account [8].

(3) Time correlation: the random nucleation process is not Markovian. Each new
waiting time is correlated with the previous one [3]. Indeed, if the previous
waiting time was longer than the average one and the total number of
incoming solute atoms was large, even after consuming atoms necessary for a
new atomic layer, the system will still have a larger concentration than the
average one. So, one might expect that the necessary supersaturation
(for nucleation) will be reached earlier so that the next waiting time will be
shorter than the average one. Thus, one might expect a negative time
correlation between the nearest waiting times. Such negative time correlation
should make the waiting times distribution narrower than for a common
Markovian process without memory. We will investigate this phenomenon in
detail below.

There are at least two experimental situations providing such a kind of nucleation
process. First is the just discovered point contact reactions between nanowires of Si
and metallic (Ni, Co, Pt) nanowires or nanodots, leading to jerky (stop-and-go)
epitaxial growth of silicide along the silicon nanowire, each stop meaning the waiting
period for nucleation of a two-dimensional (2D) island of a new silicide atomic layer
[9–12]. Following the studies by Ross and co-workers we know that the same
situation may be real for the VLS process [1,2].

The aim of this paper is to suggest a simple model incorporating all of the above
mentioned peculiarities (mononuclear regime, depletion of the droplet by each
nucleation event, stop-and-go kinetics and time correlation).

In Section 2, we present a simple model of heterogeneous nucleation of a 2D
island at the triple junction droplet–wire–vapor. Namely, in Sub-section 2.1, we find
the optimal shape as a function of nucleus size (number of atoms) under the
conditions of mechanical equilibrium. In Sub-section 2.2, we describe the thermo-
dynamics of 2D island nucleation at the bottom of the gold droplet taking into
account depletion caused by nucleation. In addition, we will take into account
depletion of the nanodroplet, which can be significant even at the nucleation stage [7]
and modify the Gibbs–Thomson relations for the case of complex nucleus shape.

2 F. Hodaj et al.
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In Sub-section 2.3, the main equations of nucleation kinetics and lateral growth of

crystalline phase are described using a simple modification of Zeldovich theory.

Finally, parameters of our model are presented.
In Section 3, the results of computer experiments are presented and discussed:

distribution of waiting times, time dependence of silicon concentration in liquid

droplet, time correlation between subsequent waiting periods, dependence of average

frequency and of average supersaturation on the flux intensity.

2. Model

Our main aim was to describe the process of layer by layer growth of a silicon

nanowhisker with the help of classical nucleation theory [13], at least for the realistic

case of the mononuclear regime. Successful nucleation of 2D islands to form a new

layer needs sufficient supersaturation of gold with silicon. On the other hand, after

successful nucleation the new layer grows fast and takes several thousands of silicon

atoms causing substantial depletion of silicon in the gold droplet. (We will see below

that ‘depletion’ actually means just a decrease of supersaturation, making the

nucleation barrier too high for immediate next nucleation). If one takes the liquid

droplet as a hemisphere of radius R, then the change of concentration Dcmax (molar

fraction of silicon) due to attachment of one monolayer of atoms is about

Dcmax ¼ �
�R2

ð2�=3ÞR3 ¼ �
3
2
h
R. Since the monolayer thickness h is typically a few

angstroms, the concentration change can be up to 2% (for an R of about 20 nm).

‘To recover’ after depletion and to make a new successful nucleation attempt, the

system needs time during which the whisker stands still and the droplet is gradually

saturated by depositing atoms.
Actually, the theoretical scheme should depend on the hierarchy of characteristic

times [14]. The total flux J is related to the deposition flux density jdep by

J¼ jdep2�R2. First of all, one should compare the time between arrivals of new Si

atoms in the droplet, �flux¼ 1/J¼ 1/( j dep2�R2), the characteristic time of Si diffusion

across the liquid golden droplet, �dif¼R2/D, and the time for atomic layer growth to

cover the whole surface after successful nucleation of a 2D island, �layer. If �flux�
�dif, then we can apply thermodynamics for the system ‘droplet plus 2D island’ at a

fixed number of both Au and Si atoms, considering the Si concentration as uniform

in the droplet. For a nanowire (NW) radius of about 20 nm and diffusivity of Si in

liquid (Au, Si) alloy D about 10�9 m2 s�1, the critical value of depositing flux density

is j depcrit � 1021 at. m�2 s�1.
We consider the possibility of stoichiometric 2D island nucleation (Figure 1)

(with concentration ci¼ 1 for the case of pure Si nanowire growth) from the

supersaturated liquid solution with average Si concentration c. For this we calculate

the Gibbs free energy of the system G(x) at different fixed number NSi of Si atoms in

the droplet with NAu gold atoms (or fixed average concentration c¼NSi/(NAuþNSi))

and look for the minimum in this dependence (see Figure 4a). Here x is a single

parameter that characterizes the size of the nuclei; nucleus shape is determined, as

usual, by mechanical equilibrium of surface tensions and by the place at which

nucleation occurs (details will be shown below).
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2.1. Nucleus shape

In our model we consider heterogeneous nucleation with a nucleus that appears on

the edge of the nanowire (Figure 2). In Figure 2, O is the center of the nanowire’s

upper base and O1 and O2 are the centers of the internal and external curvatures of

the nucleus, respectively.
The shape of the nucleus corresponds to the contour TMPK, which is determined

by the mechanical equilibrium:

�i� cos �1 � �i sin �2 ¼ 0

�� þ �i� sin �1 � �i cos �2 ¼ 0:

�
ð1Þ

Figure 1. Model system for nanowire.

Figure 2. Shape of the nucleus and the directions of the surface tensions.

4 F. Hodaj et al.
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� i, �� are the surface tensions of silicon (i) and Au–Si liquid phase (�) and � i� is the
interfacial tension between silicon and the liquid phase.

From Equation (1) we can find values of the angles �1 and �2 for known values of
� i, �� and �i�

�1 ¼ arcsin
�2i � �

2
i� � �

2
�

2���i�

� �
,

�2 ¼ arcsin
�i�
�i

cos �1

� �
:

ð10Þ

No experimental data appear to have been published on the surface tension of
solid silicon (� i). The evaluation of �i by Eustathopoulos et al. [15], � i¼ 1.08 Jm�2, is
in good agreement with the evaluation done elsewhere by Naidich et al. [16].

Naidich et al. [17] have measured the surface tension of liquid (Au, Si) alloys in
the temperature range 364�C to about 1700�C. From their measurements, the surface
tension of liquid alloys at T¼ 823K can be given approximately by the relation
��¼ 1 – 0.4cSi. For a Si-saturated liquid solution at 823K (cSi� 0.26) the surface
tension is �� � 0.9 Jm�2.

In another work, Naidich et al. [16] have studied the wetting of solid silicon by
liquid Si-saturated Au–Si alloys in the temperature range 637–1573K. Their
measurements show that solid silicon is well wetted by liquid (Au,Si) alloys, the
wetting contact angle (�) being lower than about 50� whatever the temperature and
the alloy composition. By analogy with liquid (Au,Ge)/solid Ge system (known
surface tension of solid Ge), they took the ratio � i/��¼ 1.24. This assumption allows
the authors to calculate interfacial tension �i� between solid silicon and Si-saturated
(Au, Si) alloys from experimental values of contact angle (�) and surface tension of
(Au, Si) alloys (��) as a function of temperature. At T¼ 823K, the interfacial tension
is � i� � 0.4 Jm�2.

Note moreover that, in a study of anisotropy of solid Si–liquid (Al, Si) interfacial
tension, Sens and Eustathopoulos [18] have shown that the maximum anisotropy
� i�(001)/� i� (111) is about 10%. For this reason and for sake of simplicity, in the
following we will use constant values of interfacial tensions at T¼ 823K:

��� 0.9 Jm�2, � i¼ 1.08 Jm�2 and � i�� 0.4 Jm�2.

In our model, we vary the value of HL¼ x, which allows us to fix both edges
of the internal l1 (contour TMP) and the external l2 (contour TKP) curvatures of
the nucleus. We denote the origin curvature of the nanowire bounded by these
edges as l (contour TLP). For small values of x in comparison with the radius of
the nanowire R we can evaluate the length of all curvatures and the area of the
nucleus:

l ¼ 2
ffiffiffiffiffiffiffiffiffi
2Rx
p

, x� R ð2Þ

l1 ¼
2 �=2� �1ð Þ

ffiffiffiffiffiffiffiffiffi
2Rx
p

cos �1
, ð3Þ

Philosophical Magazine 5
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l2 ¼
2�2

ffiffiffiffiffiffiffiffiffi
2Rx
p

sin �2
, ð4Þ

S ¼ 2Rx", ð5Þ

where " depends only on �1 and �2:

" ¼
�=2� �1 � sin �1 cos �1ð Þ

cos2 �1
þ
�2 � sin �2 cos �2ð Þ

sin2 �2
: ð6Þ

Now we can write the dependence between x and the number of atoms in the
nucleus n (from Equation (5) and S¼ n�/h):

x ¼
n�

2Rh"
, ð7Þ

where � is the atomic volume.
A calculation for reasonable parameters shows that radius O1M of internal

boundary l1 increases more rapidly than radius O2K of external boundary l2, so for
the small nucleus (consisting of few tens of silicon atoms) we can neglect the
deviation of external boundary from initial circle, and, respectively, neglect the
distortion of the droplet surface in the vicinity of the nucleation site.

2.2. Thermodynamics of nucleation and depletion in nanodroplet

2.2.1. Driving forces

The change of Gibbs potential of the system at conditions of epitaxy can be
defined as:

DG ¼ nDgbulk þ DGsurf ¼ nDgbulk þ �i�l1hþ �il2h� ��lh, ð8Þ

where h is the height of the monolayer and Dgbulk is the bulk driving force per one
atom of the nucleus (it is negative):

Dgbulk ¼ N=n½ gðc� DcÞ � gðcÞ� þ gi � gðc� DcÞ, ð9Þ

where g(c) is the Gibbs free energy per one atom of the liquid phase (�) with
concentration c, gi is the Gibbs free energy per one atom of the solid phase with
concentration ci¼ 1 (pure silicon), Dc is the concentration depletion after the nucleus
appears and N is the total number of atoms in the droplet.

Here we use experimental data and thermodynamic assessment of the Au–Si
system [19,20] (see Figure 3 for the phase diagram). The Au–Si solution is modelled
as a liquid solution, in which the Gibbs energies are expressed as
G ¼

P
i¼Au,Si ciG

0
i þ RT

P
i¼Au,Si ci ln ci þ GE, where G0

i are the Gibbs energies of
pure elements of Au and Si at each temperature from [19] (which are reference states
for Au and Si), GE is the excess Gibbs energy, expressed by model of subregular
solution [20]. In particular, at T¼ 823K, the expression of G is given by the
following equation:

G½J=mole� ¼ 6702:37c� 36320:01ð1� cÞ þ 6842:42fc lnðcÞ þ ð1� cÞ lnð1� cÞg

� cð1� cÞf36562:56þ 28464:63ð1� 2cÞg:

6 F. Hodaj et al.
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2.2.2. Equilibrium conditions

We take into account the possible depletion of the droplet by the very process of 2D

nucleation. In our conditions, heterogeneous nucleation occurs in the volume of

metastable phase of gold–silicon liquid solution. Depending on the number of Si

atoms in the droplet the following situations are possible, typical for nanoparticles

and nanosize diffusion zones (see, for example, [7,21,22]):

(1) For a sufficiently small number of Si atoms (relatively small c), the Gibbs’s

free energy of the droplet has only one minimum corresponding to zero

(see curve 1 in Figure 4a);
(2) For a larger number of Si atoms, the dependence G(x) becomes non-

monotonic with a second metastable minimum (see curve 2 in Figure 4a);
(3) At some critical number of Si atoms, the second minimum becomes stable

(see curve 3 in Figure 4a).

1800

1500

1200

900
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0 0.2 0.4 0.6 0.8 1.0
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Te
m
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, K

L

637K
0.207
(Au) (Si)

Figure 3. The Au–Si phase diagram calculated in [20].

Figure 4. (a) Dependence of thermodynamic Gibbs potential of the system during nucleation.
(b) Model Gibbs potentials of liquid solution and silicon (schematically).
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After this the formation of new monolayer becomes thermodynamically favored
but kinetically it depends on the height of the nucleation barrier. This height
becomes smaller and smaller with the arrival of new silicon atoms inside the droplet.
This means that to predict the growth characteristics we must modify the Zeldovich
steady-state nucleation model [13] for the case of a non-stationary driving force.

2.2.3. Capillary effects

Capillary effects are usually treated in terms of curvature-dependent Laplace
pressure. This is appropriate in the case of a spherical or cylindrical surface of the
nucleus, otherwise direct calculation of Laplace pressure near curved interfaces may
be misleading. Actually, the capillary effect will cause a size dependence of Gibbs
energy, chemical potential and of the corresponding equilibrium composition. It is
convenient instead of introducing individual curvatures for the different sides of the
nucleus to use a single effective curvature kef¼ 1/Ref, where Ref is the effective radius
of curvature, which will be introduced below.

Stable or unstable equilibrium (including the saddle-point at the nucleation
barrier) is determined by the condition of zero derivative of change of Gibbs energy
DG (see Equation (8)):

dDG
dx
¼ Dgbulk þ

dDGsurf

dn
¼ Dgbulk þ h �i�

dl1
dn
þ �i

dl2
dn
� ��

dl

dn

� �

¼ Dgbulk þ h
dx

dn
�i�

dl1
dx
þ �i

dl2
dx
� ��

dl

dx

� �
, ð10Þ

where �ef is the effective surface energy coefficient (combination of � i�, � i and ��, see
below).

We can find derivatives from Equations (2)–(4) and (7):

dl

dx
¼

ffiffiffiffiffiffi
2R

x

r
,

dl1
dx
¼
�=2� �1ð Þ

ffiffiffiffiffiffi
2R
p

cos �1
ffiffiffi
x
p ,

dl2
dx
¼

�2
ffiffiffiffiffiffi
2R
p

sin �2
ffiffiffi
x
p ,

dx

dn
¼

�

2Rh"
: ð11Þ

Hence,

dDG
dx
¼ Dgbulk þ

�ffiffiffiffiffiffiffiffiffi
2Rx
p

"
�ef ¼ Dgbulk þ

constffiffiffi
n
p ¼ Dgbulk þ gcapillarðnÞ ð12Þ

with

�ef ¼
�=2� �1ð Þ

cos �1
�i� þ

�2
sin �2

�i � ��, ð13Þ

and

gcapillarðnÞ ¼
@DGsurf

@n
¼
�ef�

RefðnÞ
ð14Þ

with RefðnÞ ¼
ffiffiffiffiffiffiffiffiffi
2Rx
p

".
Thus the concentration of silicon in the droplet in equilibrium with a 2D island of

size n at the edge of a nanowire surface may be found using standard common

8 F. Hodaj et al.
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tangent construction (Figure 4b) with rising the Gibbs energy gi of the pure silicon by
‘Laplace term’ gcapillar(n).

The change of the value of equilibrium composition �c¼ ceq(n) – ceq (here ceq
corresponds to the equilibrium composition on the planar boundary) due to the
appearance of curvatures on the nucleus shape should be found by use of the
common tangent rule (Figure 4b):

�c ¼ ceqðnÞ � ceq ¼
gcapillarðnÞ

ð1� cÞ g00
, ð15Þ

where g00 is the curvature of the dependence g�(p) at point ceq.
From Equation (15) we obtain:

�c ¼ ceqðnÞ � ceq ¼
gcapillarðnÞ

ð1� cÞ g00
¼

�ef�ffiffiffiffiffiffiffiffiffi
2Rx
p

"

1

ð1� cÞ g00
: ð16Þ

2.3. Kinetics

Let us consider a kinetic model for nucleation and lateral growth of a nanowhisker,
taking into account deposition flux jdep of silicon atoms (in atoms of Si per m2 of
liquid surface) from disilane gas [23]:

j dep ¼
P

4kT

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8kT

�mdiss

s
, ð17Þ

where P is the disilane pressure and mdiss is the mass of disilane molecule (Si2H6).
In the following the molar fraction of silicon cSi¼NSi/(NSiþNAu) will be

noted by c.
The conservation law for silicon atoms in the droplet before nucleation gives:

dNSi

dt
¼ 2jdep�R2: ð18Þ

The rate of change of mean concentration of silicon in the droplet before the next
nucleation event is approximately equal to:

dcðtÞ

dt
¼

1� cðtÞð Þ

NSi þNAu

dNSi

dt
¼ 1� cðtÞð Þ

3�

R
jdep: ð19Þ

We can represent the change of mean concentration of Si discretely:

cðtþ dtÞ ¼ cðtÞ þ 1� cðtÞð Þ
3�

R
jdep: ð20Þ

Nucleation frequency can be defined as:

vðtÞ ¼ e��=tsðG�, xcrÞ2�R, ð21Þ

where � is a lag-time, necessary to reach the critical size by random walk in the size
space without influence of nucleation barrier, and s is steady-state flux in the size

Philosophical Magazine 9

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
G

re
no

bl
e]

 a
t 0

8:
33

 0
7 

Se
pt

em
be

r 
20

11
 



space (number of islands intersecting critical size per unit time per unit length of
liquid/solid/vapor junction with the total length 2�R). From Zeldovich theory,
modified for time-dependent nucleation on the one-dimensional contour, nucleus
size being determined by characteristic length x at Figure 2:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�DG00

�kT

r
f eqðxcrÞBðxcrÞ, ð22Þ

where DG00 ¼ d2DG
dx2

� �
x¼xcr

is the curvature of the nucleation barrier, f eq(xcr) the

equilibrium size distribution, and diffusivity of the nucleus in the size space near

critical size, B(xcr), is given by:

BðxcrÞ ¼ �kT

dx
dt

� 	
x!xcr

dDG
dx

� 	
x!xcr

: ð23Þ

f eqðxcrÞ ¼ const 	 exp
�DGðxcrÞ

kT

� �
, ð24Þ

where DGðxcrÞ ¼ DG� is a nucleation barrier, which previously (in Zeldovich theory)
was treated as constant in time.

As we have a nucleus of pure silicon, each silicon atom on the triple junction
could be the centre of nucleation. So, the value of const in Equation (24) can be
found according to [24]:

const ¼
c

�1=3

dn

dx
: ð25Þ

Indeed, if the nucleus size is characterized by number of atoms then f(n¼ 1) is the
number of silicon atoms at the perimeter 2�R, equal to c(2�R/�1/3), divided by the
length of that perimeter.

f eqðn ¼ 1Þ ¼
c

�1=3
:

If, instead of n, nucleus size is characterized by length x, then the distribution
functions are transformed in the standard way:

f ðxÞ ¼
dn

dx
f ðnÞ,

which immediately gives Equation (25).

2.3.1. Determination of ‘diffusivity in size space’ B(xcr)

2.3.1.1. Calculation of dx
dt

� 	
x!xcr

. In this paper, we will limit ourselves to diffusion-
controlled nucleation. Interface-controlled nucleation will be considered elsewhere.
The critical radius (typically about 1 nm) is assumed to be much smaller than the

10 F. Hodaj et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
G

re
no

bl
e]

 a
t 0

8:
33

 0
7 

Se
pt

em
be

r 
20

11
 



nanowire radius (typically 10 nm or more), so that the 2D shape of the nucleus does

not prevent concentration distribution from being almost spherically symmetrical.

At first we use the conservation of matter considering a 2D island surrounded by a

sphere of radius sufficiently large so that in this radius can be assumed to have

almost hemispherical symmetry.
Relation between total diffusion flux Jdif in the radial direction and the rate of

nucleus growth (unusual combination of 3D diffusion with 2D particle seems OK as

far as particle size is much smaller than the droplet size):

�Jdif ¼
d

dt

Sh

�

� �
¼

h

�

dx

dt

dS

dx
, ð26Þ

with

Jdif ¼ � j 	ð Þ2�	2 at any 	� x: ð27Þ

Factor � characterizes the deviation from spherical geometry in the vicinity of the

nucleus. Unfortunately, we cannot suggest anything better than analytic solution

under spherical geometry and roughly assume �� 1/2.
As shown in textbooks on Ham’s model of precipitate growth in 3D space or for

3D ripening [25], the steady state flux density in 3D space is:

j ð	Þ ¼ �
D c� ceqðnÞ
� 	

�	2
refmin, ð28Þ

where refmin ¼
ffiffiffiffiffiffiffiffiffi
S=�
p

, (S is determined by Equation (5))
Moreover, from Equations (7) and (21) we obtain:

dS

dx
¼ 2R" ð29Þ

and

c� ceqðnÞ ¼ c� ceq �
�efffiffiffiffiffiffiffiffiffi
2Rx
p

"

1

ð1� cÞ g00
: ð30Þ

From combination of Equation (26)–(30) we obtain the growth rate:

dx

dt
¼

ffiffiffiffiffiffi
2�

R"

r
�D ðc� ceqÞ

ffiffiffi
x
p
� �ffiffiffiffiffi

2R
p
ð1�cÞ g00

� ef

"

h i
h

: ð31Þ

Zero value of the growth rate corresponds to the critical size. Thus,

�ffiffiffiffiffiffi
2R
p
ð1� cÞ g00

�ef

"
¼ ðc� ceqÞ

ffiffiffiffiffiffi
xcr
p

: ð32Þ

Hence,

dx

dt

� �
x!xcr

¼

ffiffiffiffiffiffi
2�

R"

r
�Dðc� ceqÞ

ffiffiffi
x
p
�

ffiffiffiffiffiffi
xcr
p� 	

h
: ð33Þ
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2.3.1.2. Calculation of dDG
dx

� 	
x!xcr

. From Equation (12), and taking into account
Equations (11) and (29), we obtain:

dDG
dx
¼

dDG
dn

dn

dx
¼ Dgbulk þ

��ef

"
ffiffiffiffiffiffiffiffiffi
2Rx
p

� �
2Rh"

�
¼ Dgbulk

2Rh"

�
þ
h�ef

ffiffiffiffiffiffi
2R
pffiffiffi
x
p : ð34Þ

The critical radius of a 2D nucleus corresponds to the zero derivative of Gibbs

energy change, thus, Dgbulk 2Rh"
�
¼ �

h�ef
ffiffiffiffiffi
2R
pffiffi
x
p . Hence,

dDG
dx

� �
x!xcr

¼ h�ef
ffiffiffiffiffiffi
2R
p 1ffiffiffi

x
p �

1ffiffiffiffiffiffi
xcr
p

� �
¼ h�ef

ffiffiffiffiffiffi
2R
p

ffiffiffiffiffiffi
xcr
p

�
ffiffiffi
x
p

xcr

� �
: ð35Þ

Finally, after substitution of Equations (33) and (35) in Equation (23), we obtain:

BðxcrÞ ¼ �kT

ffiffiffiffiffiffi
2�

R"

r
�Dðc� ceqÞ

ffiffiffi
x
p
�

ffiffiffiffiffiffi
xcr
p� 	

h

xcr

h�ef
ffiffiffiffiffiffi
2R
p ffiffiffiffiffiffi

xcr
p

�
ffiffiffi
x
p� 	

¼ kT

ffiffiffi
�

"

r
�xcrDðc� ceqÞ

Rh2�ef
: ð36Þ

Or, to avoid the simultaneous presence of the supersaturation term, (c – ceq), and
critical size parameter, xcr, we can use Equation (32) once again to give:

BðxcrÞ ¼ kT
ffiffiffiffiffiffiffiffi
�=2

p �D�

R3=2"3=2h2ð1� cÞ g00
ffiffiffiffiffiffi
xcr
p

: ð37Þ

We determine nucleation probability and then use standard Monte Carlo scheme
with Equation (21):

p Dtð Þ ¼ v tð ÞDt, ð38Þ

If, at some value t�, random5 p Dtð Þ, then

co,iþ1 ¼ ciðt
�Þ �

3h

2R
: ð39Þ

2.3.2. Parameters and basic algorithm for modeling of step-wise nanowire growth

Disilane pressure was varied between 1
 10�7 and 3
 10�5Torr (typical values used
in [1,2]), diffusivity of Si in liquid solution D¼ 10�9m2/s, height of monolayer
h¼ 0.31
 10�9 m and radius of liquid droplet (taken here approximately as
hemispherical) R¼ 22 nm. The time-step was chosen depending on flux density, as
one percent of anticipated average waiting time: dti ¼

ht ii
100 ¼

h

100�jdep
i

:

A formulated model was used for numerical calculation of time behavior of
supersaturation and step-flow kinetics. For that purpose, a Monte Carlo algorithm
was used.

12 F. Hodaj et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
G

re
no

bl
e]

 a
t 0

8:
33

 0
7 

Se
pt

em
be

r 
20

11
 



3. Results and discussion

We cannot claim to predict the mean waiting time in the steady-state regime:

evidently, this average time is just an inverse total flux J (hti ¼ h
�j dep

). Yet, one can

suggest other characteristics. Typical time dependences of nucleation probability and

of silicon content in gold droplet are presented in Figure 5. In particular, Figure 5b

demonstrates that the system possesses elements of self-organization – the concen-

tration of silicon in the droplet soon ‘forgets’ about its initial value and fluctuates

around some steady-state asymptotic value determined by the magnitude of

incoming flux: the larger the flux, the higher the average supersaturation. The

dependence of the asymptotic average value of composition on incoming flux is

shown in Figure 6. Time correlations between these fluctuations are discussed below.
In Figure 5b, it can also be seen that supersaturation remains significantly larger

than the depletion during one monolayer growth. Indeed, the variation of silicon

concentration in the drop after nucleation and ‘instantaneous’ growth of a silicon

monolayer, for h¼ 0.31 nm and R¼ 22 nm, Dcmax¼ 0.0211 is twice as low as the

mean silicon supersaturation c� ceq of about 0.046. Thus, depletion as a result of

nucleation, in our previous considerations, means just lower supersaturation with a

respectively high nucleation barrier.
Figure 6 shows that the inverse of the supersaturation decreases linearly with the

logarithm of the incoming flux density (proportional to disilane pressure). This linear

character of dependence can be explained by a rather simple theoretical model to be

presented elsewhere.
In Table 1, values of nucleation barrier energies for average silicon concentration

(as well as the minimum and maximum values) are presented for different values of

incoming flux. In this table values of average supersaturation are also reported. It

can be seen that the nucleation barrier energy decreases with the increasing incoming

flux, which is in agreement with the fact that silicon supersaturation increases with

the deposition flux (see Figure 6a).
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Figure 5. Typical nucleation probability dependence on time (a) and typical silicon
concentration dependence on time (b) for Si nanowires with R¼ 22 nm grown at T¼ 823K
and disilane pressure 4
 10�7Torr.
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In the Table 2 and Figures 7–8 we present:

the average waiting time: hti ¼

Pn
i¼1 ti
n

,

where the number of intervals (for successful nucleation) for each calculation is

n¼ 1000;

the square root of average squared deviation of waiting times: D¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðti� htiÞ

2

n� 1

s
;

the dimensionless standard deviation: d ¼
D
hti

;

the absolute time correlation: C ¼

Pn
i¼2 ðti � htiÞðti�1 � htiÞ

n� 1
;

and the dimensionless time correlation: c ¼
C

D
¼
ðti � htiÞðti�1 � htiÞ

ðti � htiÞ
2

:

Figure 6. Dependence of inverse supersaturation on the logarithm of disilane pressure (in
Torr) for Si nanowires with R¼ 22 nm grown at T¼ 823K.

Table 1. Minimal and maximal values of nucleation barriers for T¼ 823K.

Disilane
pressure (Torr)

Average
concentration

Average
supersaturation DGmin

kT
DGmax

kT

4
 10�7 0.3053 0.04591 27.762 36.278
5
 10�6 0.3088 0.04944 25.255 36.274
3
 10�5 0.3118 0.05244 23.573 35.319

14 F. Hodaj et al.
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Figure 7 shows the variation of dimensionless standard deviation and dimen-
sionless time correlation with the logarithm of deposition flux density. The
dimensionless standard deviation increases almost proportionally with the logarithm
of the disilane pressure (in Torr) up to 1
 10�5Torr, whereas the variation of
dimensionless time correlation presents an asymptotic behavior (i.e. for high flux
densities it tends to zero).

Figure 7. Dependences of dimensionless standard deviation (a) and the logarithm
dimensionless time correlation (b) on the logarithm of disilane pressure (in Torr).
Note that in (b) the gradient is close to –1 which means that the absolute value of
the dimensionless time correlation is approximately inversely proportional to the flux density.
(c) Phase-plane portrait of dimensionless standard deviation and dimensionless time
correlation.

Table 2. Dependence of different time characteristics on the disilane pressure (T¼ 823K).

Disilane
pressure
(Torr)

Average
waiting
time (s)

Average
squared

deviation (s)

Dimensionless
standard
deviation

Absolute
time

correlation (s)

Dimensionless
time

correlation

4
 10�7 12.456 1.238 0.099 �0.759 �0.613
5
 10�6 0.996 0.118 0.119 �0.007 �0.057
3
 10�5 0.166 0.025 0.149 �3.2
 10�4 �0.013
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Distributions for disilane pressures P¼ 4
 10�7, 5
 10�6 and 3
 10�5Torr are
presented in Figure 8. They are rather well fitted by a Weibull distribution.
Parameters of the Weibull distribution function (y ¼ f ðxja, bÞ ¼ ba�b

xb�1e�ð

x
aÞ
b

Ið0,1ÞðxÞ) are estimated. The larger the value of b, the narrower the
distribution.

4. Summary

The results of this study can be summarized as follows:

(1) The possibility of jerky motion is confirmed in the model using assumptions
of heterogeneous nucleation, a mononuclear mechanism and diameter-
independent growth rate.

(2) Zeldovich nucleation theory (including determination of diffusivity in size
space) is adapted for the case of: heterogenous nucleation; complex geometry;
time-dependent driving force.

(3) Asymptotic supersaturation of liquid Au with Si increases with increasing
incoming flux. Inverse supersaturation is a linear descending function of the
flux density logarithm.
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Figure 8. Distribution of waiting times fitted by Weibull distribution function: (a) for disilane
pressure 4
 10�7Torr with parameters a¼ 1.045, b¼ 10.526; (b) for disilane pressure
5
 10�6Torr with parameters a¼ 1.052, b¼ 8.697; (c) for disilane pressure 3
 10�5Torr
with parameters a¼ 1.064, b¼ 7.030.
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(4) The standard deviation of reduced waiting times distribution increases with
increasing deposition flux. It correlates with the time correlation for
subsequent monolayers. Stronger time correlation corresponds to narrower
waiting time distribution. This result obtained for silicon repeats the
conclusion of [3] for VLS growth of GaAs nanowhiskers.

(5) Waiting time correlation for subsequent events is negative and it increases by
an absolute value with decreasing incoming flux. Namely, the absolute value
of the dimensionless time correlation is approximately inversely proportional
to the flux density.

(6) The waiting time distribution is well fitted by Weibull plots with standard
deviation decreasing with decreasing flux density.
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