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a b s t r a c t

This paper introduces a new model for calculating the change in time of three-dimensional atomic
configurations. The model is based on the kinetic mean field (KMF) approach, however we have
transformed that model into a stochastic approach by introducing dynamic Langevin noise. The result is a
stochastic kinetic mean field model (SKMF) which produces results similar to the lattice kinetic Monte
Carlo (KMC). SKMF is, however, far more cost-effective and easier to implement the algorithm (open
source program code is provided on http://skmf.euwebsite).Wewill show that the result of one SKMF run
may correspond to the average of several KMC runs. The number of KMC runs is inversely proportional to
the amplitude square of the noise in SKMF. This makes SKMF an ideal tool also for statistical purposes.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Mean field approach to the thermodynamics of phase trans-
formations in solids has been well-known for years [1]. It was
developed into Generalized Stochastic Field Kinetic Model by
inclusion of the Langevin noise of conserved (composition) and
non-conserved order parameters. [2,3]. Noise amplitude satisfied
the fluctuation–dissipation theorem and was determined by the
temperature and mobility. Among attempts of non-linear general-
ization to kinetics of diffusion controlled processes—themostwell-
known now (and self-consistent)—is a quasi-one-dimensional
model by George Martin [4]. Martin’s kinetic mean field model
(KMF) was developed from the very beginning for atomic scale (at
the base ofmaster equation) and took into account the dependence
of jump frequencies (and corresponding activation energies) on the
local surrounding of jumping atoms. Note that in Martin’s atom-
istic model one does not need any additional non-conserved or-
der parameter to describe ordering of alloy—it is fully described
by distribution of composition (conserved parameter) at each site.
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Thismodel did not contain noise andwas applied not only to phase
transformations but also to initial stages of diffusion. The most in-
teresting resultswere obtained for systemswith a large asymmetry
of components (large difference between A–A and B–B pair inter-
action energies) [5,6]. In particular, asymmetry may lead to sharp-
ening of composition profile instead of its smoothening (of course,
simultaneously with its movement due to intermixing). Also, for-
mation of intermediate B2 ordered phase in the contact zone of
the couple with sharp asymmetry may start far from stoichiomet-
ric composition [7]. In [8] this approach was modified to 3D case.

All systems treated by KMF, may be alternatively treated by
KMC [9,10]. The main advantage of algorithms based on the
kinetic mean field (KMF) approximation is that they give definite
results. We do not need to run the algorithm several times and
then average them to predict the most probable scenario of a
process. They have, however, a significant drawback: stochastic
fluctuations induced processes cannot be simulated. For instance,
nucleation of precipitates in a supersaturated solid solution
outside of the spinodal will never occur in a mean field model.
Moreover, a random solid solution (described in KMF by absolutely
the same composition at all sites) quenched into the spinodal
region will never decompose. Therefore, if evolution of the system
includes overcoming of some barrier via some saddle point with
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further normal decrease of free energy, the KMF method fails.
Overcoming of the (nucleation) barrier is an important stage of the
first order transformation. Introduction of noise into the kinetic
mean field model provides the possibility of first order phase
transformations but still keeps the advantages of KMF.

2. Methods

The problem of noise is well-known from Brownian motion. It
is important to introduce the stochastic factor into a deterministic
scheme keeping the phase trajectories continuous—excluding the
possibility of jumps in the phase space. Therefore the noise is
prescribed neither to coordinates nor to velocities but to forces (or
accelerations). Force acting on the Brownian particle is represented
as the sum of two forces: viscous and stochastic. Substituting them
into Newton’s second law:

d−⇀v
dt

= −γ−⇀v +

−⇀
F stoch

m

where γ is a damping coefficient. Stochastic force
−⇀
F stoch and cor-

responding stochastic acceleration −⇀a stoch =
−⇀
F stoch/m are treated

as random variables with zero time correlation. Accordingly, the
correlation function has the form of Dirac delta-function:
−⇀a stoch (t) ,

−⇀a stoch

t ′


= Anδ

t − t ′


where <> means averaging over ensemble or – according to er-
godic hypothesis – over time, and An is the amplitude of the noise.
In numeric solution, when the time is discrete with time step dt:
−⇀a stoch (ti) ,

−⇀a stoch

tj


=
An

dt
δi,j.

In such representation the results (average values) will not depend
on the time step. Physically it means that we fix the change of ve-
locity during one time step. Such noise without memory is called a
Langevin noise. Noise amplitude is determined from the constraint
of thermodynamic equilibriumbetween the ensemble of Brownian
particles and the surrounding fluctuating medium.

We will introduce the noise into mean field kinetic equations
taking into account that these equations contain only first time
derivative instead of second one (no inertia). Accordingly, one
might assume that the noise amplitude should be divided not by
dt but by

√
dt . One must also decide the noise of WHAT should be

introduced. Noise (random change) of composition in each site at
each time moment is not the best idea, since it immediately leads
to singularities in the composition change rates. Accordingly, noise
must be prescribed to the REASON of change in composition—to
the microfluxes between neighboring sites. Actually, it is a noise
of jump frequencies. This can be introduced in at least two ways:
random addition to deterministic frequencies or random change
of activation energy in the expression for jump frequency. In this
paper we will demonstrate the first way.

Rate of change of composition in each site i of a three-
dimensional grid is defined according to conservation of matter
and the corresponding local flux balance at each site (in the case
of the exchange mechanism of diffusion):

dci
dt

= −

Z
j=1


ci

1 − cj

 
Γ

mean-field
i,j + δΓ

Lang
i,j


− (1 − ci) cj


Γ

mean-field
j,i + δΓ

Lang
j,i


(1)

where ci is the atomic fraction of A atoms at site i, cj is the atomic
fraction of A atoms on a neighboring site j, and the total number of
nearest neighbors is Z . ci


1 − cj


is in fact the probability that the
site i is occupied by an A atom and a neighboring j site by a B atom;
i.e. an A–B exchange is possible. (In mean field approximation the
correlations are neglected.)Γ mean-field

i,j is the probability of such an
exchange per unit time in mean field approximation, i.e. the jump
rate of A atoms from site i to a neighboring site j and backward
jumps of B atoms (Γ mean-field

j,i is for an exchange of anA and a B atoms
being on site j and i, respectively):

Γ
mean-field
i,j = ν exp


−Qi,j

kT


= ν exp


−

E0 − Ei,j
kT


.

Here k is Boltzmann’s constant, T is the absolute temperature,
Qi,j = E0 − Ei,j, E0 is the saddle point energy, considered con-
stant in this work, and Ei,j = EA

i + EB
j where EA

i =
Z

l=1[clVAA +

(1 − cl) VAB] and EB
j =

Z
n=1 [cnVAB + (1 − cn) VBB] are the inter-

action energies of an A and a B atom on site i and j, respectively;
Vαβ (α, β = A, B) are the pair interaction energies. On introduc-
ingM = (VAA − VBB) /2, V = VAB − (VAA + VBB) /2 and Γ0 = ν exp
{[−E0 + Z (VAB + VBB)] /kT }, Γ mean-field

i,j can also be written as:

Γ
mean-field
i,j = Γ0 exp


Êi,j
kT


(2)

where

Êi,j = (M − V )

Z
l=1

cl + (M + V )

Z
n=1

cn. (3)

Note that V is the regular solid solution parameter – proportional
to the heat of mixing – andM determines the strength of the com-
position dependence of the tracer diffusion coefficient (diffusion
asymmetry). Last but not least, δΓ Lang in Eq. (1) are the noise terms,
which are random additions to the mean field exchange rates:

δΓ
Lang
i,j =

An
√
dt

√
3 (2random − 1) (4)

where random is a uniform random number between 0 and 1. It is
easy to check that the random expression

√
3 (2random − 1) has

the mean squared value equal to 1. Note that thanks to the
√
dt in

denominator of Eq. (4) the asymptotic dispersion of concentration
at fixed An does not depend on dt.

Actually, Eqs. (1)–(4) have to be used to calculate the time
evolution of the composition at each site of a 3D lattice (see
open source code). With An = 0, we perform a fully mean field
calculation, whereas with increasing An the calculation becomes
more and more stochastic, that is the dispersion of composition
becomes higher.

Formally, it is possible to rewrite the master equations for the
vacancy mechanism:

dcA(i)
dt

= −cA(i)
Z

j=1

cv(k)Γ AV
ij + cv(i)

Z
j=1

cA(k)Γ AV
ji

dcB(i)
dt

= −cB(i)
Z

j=1

cv(j)Γ BV
ij + cv(i)

Z
j=1

cB(j)Γ BV
ji ,

dcv(i)
dt

= −cv(i)
Z

j=1

cA(j)Γ AV
ji − cv(i)

Z
j=1

cB(j)Γ BV
ji

+ cA(i)
Z

j=1

cv(j)Γ AV
ij + cB(i)

Z
j=1

cv(j)Γ BV
ij .

Here

Γ AV
ij = νA exp


−

E0 − EA
i

kT


,
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Γ BV
ij = νB exp


−

E0 − EB
i

kT


,

EA
i =

Z
l=1

[cA(l)VAA + cB(l)VAB] ,

EB
i =

Z
l=1

[cA(l)VBA + cB(l)VBB] .

Nevertheless, such a formal approach is almost useless as the time
step is determined by the fastest component. In this case vacancies
are by many orders of magnitude faster than A and B. Therefore
it is practically impossible to calculate the redistribution of the
main components in reasonable computation time. To escape this
problem, we suggest using the steady-state approximation for
vacancies:
dcv(i)
dt

= 0.

This approximate equation can be used as a basis for iteration
procedure:

c iter+1
v (i) =

cA(i)
Z

j=1
c iterv (j)Γ AV

ij + cB(i)
Z

j=1
c iterv (j)Γ BV

ij

Z
j=1


cA(j)Γ AV

ji + cB(j)Γ BV
ji

 .

3. Algorithm

In this paper we show the algorithm for the exchange
mechanism. At a later datewewill publish the code for the vacancy
mechanism.

To calculate the time evolution of the composition at each site,
we have to solve Eq. (1). In fact, the first and second terms in Eq. (1)
are the outgoing and incoming net fluxes of A atoms, respectively.
It is, however, very important to emphasize that the incoming net
flux for a site is also an outgoing one for the neighboring sites
and vice versa. As a consequence, it is purposeful to construct
the algorithm in a way where one calculates only the outgoing
fluxes at every site to the neighboring sites. To solve Eq. (1),
we use its dimensionless form. Accordingly, we introduced the
dimensionless time τ ≡ Γ0t , noise amplitude Ãn ≡ An/

√
Γ0 and

frequency Γ̃
mean-field
i,j ≡ Γ

mean-field
i,j /Γ0.

A basic open source code is available on the http://skmf.euweb-
site. It serves demonstrational purposes to help in understanding
how SKMF works; it is not optimized for efficiency but for under-
standing. The program’s input is in ASCII format (input.txt). In the
input file the following parameters should be given: seed for the
pseudorandom number generator (0 gives pseudorandom seed),
dimensions of the FCC crystal lattice sample (Nx,Ny,Nz), where
the unit cell’s dimensions are 2×2×2. Note that because of the pe-
riodic boundary conditions applied in the software, input dimen-
sions should be even numbers in all three directions. This way the
number of particles in such a system is given by Nx × Ny × Nz/2.
The next two parameters are the dimensionless diffusion asym-
metry parameter (M/kT ) and dimensionless regular solid solu-
tion parameter (V/kT ). The dimensionless amplitude of dynamic
Langevin noise (An_tilde) and the value of the dimensionless time
step (dtau) should be given in the next two lines. The recording fre-
quency (Ss) and the total number of records (Ns not including the
initial state) provide the possibility to adjust the length of the sim-
ulation and the time resolution. The consecutive composition con-
figurations are recorded into an output file (output.xyz) formatted
for direct use in Ovito (Open Visualization Tool [11]). The last in-
put parameter determines the average composition of the system,
which is the starting atomic fraction at every site in the case of a
homogeneous initial state.

It is important to note that if the composition fluctuations
caused by the amplitude of Langevin noise are high enough
compared to the values of ci or 1 − ci, the fluctuations can
lead the composition of site i out of the [0,1] range – as the
noise is independent of the local composition. This situation,
being unphysical, requires some action. Two main approaches
are possible to handle this phenomenon. First, to prevent such
a situation by changing the Langevin noise depending on how
close the composition of a site and its surrounding are to 0
or 1. Second, to leave the noise unaffected, but after updating
the concentrations, the material outside [0,1] interval should
somehowbe redistributed in the system in a physicallymeaningful
way. From a computational point of view, the second approach is
simpler andmore straightforward.We implemented the latter one.

The main idea is to divide one computational cycle into two
parts:mean field and noise. In one iteration cycle, we first calculate
dc i from Eq. (1) supposing that δΓ Lang

i,j = 0 for all i, j (denote this by
dcmean-field

i ) and check if all ci would remain in the range of [0,1] after
updating the composition; but we do not update the composition
at this point. If the composition is not in range, then KMF solution
is not stable, the software needs to be restarted with decreased
time step. If, however, the composition remains in the [0,1] range
everywhere, we calculate dc i from Eq. (1) again but now supposing
thatΓ mean-field

i,j = 0 for all i, j (denote this by dcLangi ).Wenowupdate
ci by dci = dcmean-field

i + dcLangi and check if the updated values are
in the range of [0,1]. If it is not in range, we redistribute the excess
(ci > 1; or deficiency ci < 0)material among the neighboring sites.
The redistribution is not even but weighted by the composition of
the sites. For safety’s sake, after redistribution we check again if
the composition of all sites is in the [0,1] range; if not, the software
needs to be restarted with a decreased time step.

It is very important to note that it is only necessary to
apply this redistribution algorithm if the studied problem leads
to compositions close to 0 or 1. For example, in this work we
needed to apply this only for the case of calculation of phase
separation from supersaturated homogeneous alloy with very
limited solubility (see later).

In stochastic models good quality pseudorandom numbers are
needed. In the published code we used the Mersenne-Twister
MT19937 [12] algorithm via the standard C++11 implementation.

4. Results and discussion

As shown inAppendix A, the interrelation between noise ampli-
tude and composition fluctuations can be derived analytically for
the simplest case of ideal (V = 0) and symmetric (M = 0) solution
(in this case the base exchange frequency –without noise – is equal
to Γ0 for all possible exchanges, and its dimensionless counterpart
Γ̃ ≡ Γ̃

mean-field
i,j = Γ0/Γ0 = 1 for all i, j):

(δc)2

=

c̄ (1 − c̄)
√

Γ0
An (5)

where c̄ is the average composition of the solution. To test our
model, we performed calculations with different noise levels. For
each fixed noise we started from a homogeneous solution, the

mean square fluctuation of composition


(δc)2

started to grow

with time from zero and eventually reached asymptotic value.

We plotted these asymptotic values of


(δc)2

vs. An. As can be

seen in Fig. 1, the results fulfilled perfectly the interrelation (5).
Note that this calculation was repeated for different c̄ values and
computation cell sizes.

http://skmf.eu
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Table 1
Analysis of the KMC results. At the end of each KMC run, a value of 1, 0 or 0.5 was assigned to the lattice sites, depending on if the site is occupied by an A, B atom or a
vacancy, respectively. The bottom line shows the average value of each site and dispersion of the averages.

Site 1 Site 2 Site 3 . . . Site 500

MC run 1 0 1 1 . . . 1
MC run 2 1 1 0 . . . 1
MC run 3 1 1 1 . . . 0
.
.
. . . .

MC run N 0 0 1 . . . 0

Average 0.5132 0.5113 0.5049 . . . 0.4992 σKMC = 4.961 × 10−3
Fig. 1. Steady-state deviation of the composition as a function of noise amplitude:
(δc)2


vs. Ãn with c̄ = 0.5 and Γ̃ = 1. The computational cell was a cube

containing 60∗ 60∗ 60/2 atoms in FCC structure; periodic boundary condition was
applied. The data points fit to a straight line with a slope of 0.25. (see Eq. (5)).

Fig. 2. Dispersion of the composition from the average of N KMC runs as a function
of N on the log10–log10 scale. The slope of the fitted straight line is −0.5 and the
y-intercept is −0.3.

We also performed these calculations by using a one-vacancy
KMC [13] in the equiatomic alloy. There were 500 atoms in the
computation cell. The lattice was FCC and periodic boundary
condition was applied. We repeated the simulation 104 times
always starting from the same random configuration. Each
simulation consisted of 80 Monte Carlo steps. At the end of each
KMC run, we assigned a number to the sites: 1 if the site was
occupied by A, 0 if by B and 0.5 if by the vacancy. We averaged the
value of each corresponding site for N runs resulting 500 values
scattering around 0.5 (see Table 1) – the higher the N , the closer to
0.5. Then we calculated the dispersion (σKMC ) of these 500 values.
We performed this for N equal to 1, 10, 100, 1000 and 10000. Fig. 2
shows the σKMC as a function of N .
As can be seen, the data points fit perfectly to a straight line
on the log10–log10 scale of which slope is equal to −0.5. The y-
intercept is equal to −0.3 (log10 0.5), which is obvious as for N =

1, σKMC = 0.5 (dispersion of the same number of 1s and 0s).
Therefore,

σKMC =
1

2
√
N

. (6)

As shown in Appendix B, this formula can also be easily derived
analytically. In case of arbitrary composition c̄ , instead of Eq. (6)
one has

σKMC =


c̄ (1 − c̄)

1
√
N

. (6′)

As can be seen for N → ∞, σKMC → 0. This means that after
averaging an infinite number of KMC runs the dispersion of the site
averages is equal to zero; which is just the result of an SKMF with
An = 0 (i.e. a KMF). This means that it is reasonable to try to find
some relation between N and An. This can be done by comparing

Eqs. (5) and (6′) (


(δc)2

= σKMC ):

N =
Γ0

c̄ (1 − c̄) A2
n
. (7)

This formula (as already mentioned, its analytical derivation is
given in Appendix B) gives, therefore, how many times a KMC
calculation should be run and averaged to get the same result as
an SKMF run gives with a given An; or inversely, an SKMF run
with a given An equal to the average of how many KMC runs. This
clearly shows the high efficiency of SKMF. If we also consider that
usually one SKMF run is much faster than one KMC run, the gain is
invaluable.

Expression (7) also shows that by varying the value of An, an
SKMF calculation can be literally tuned between KMC and KMF
limits, as desired.

To check and illustrate the effectiveness of SKMF, we applied
it to the following examples: (I) nucleation and decomposition in
themetastable solid solution; (II) influence of noise on the spinodal
decomposition in quasi-1D structure (nanowire).

(I) As mentioned in the introduction, noise is especially impor-
tant for first-order phase transitions which require overcoming of
nucleation barriers. Therefore we started checking SKMF by mod-
eling of decomposition of a solid solution at a given temperature
and composition corresponding to ametastable state (between the
spinodal and the solubility curves-Fig. 3a–b). Of course, without
noise (i.e. within KMF model) the initially homogeneous alloy will
remain unchanged forever.

We introduced the Langevin noise of various amplitudes.
As expected, this provided the nucleation (homogeneous one)
and growth after some waiting (incubation) time. Characteristic
videos demonstrating nucleation and growth are provided in
Supplementary materials [14] (Movie 1, Appendix C). Although,
strictly speaking, the exact moment of nucleation is ambiguous,
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Fig. 3. (a) Phase diagram of the modeled binary solid solution system
(dimensionless temperature on the vertical axes). Dashed blue and continuous
red lines correspond to the spinodal and miscibility curves respectively. The blue
square (c̄ = 0.9; V/kT = 0.4) indicates the initial state of the system in
the metastable region for single nucleation process. The magenta filled circle
(c̄ = 0.5; V/kT = 0.3316) indicates the initial state of the system for the
spinodal decomposition process of nanowire. (b) Nucleation during decomposition
in metastable binary solid solution. Calculation conditions: mean composition c̄ =

0.9;mixing energyV/kT = 0.4; noise amplitude Ãn = 0.5; sample size 20×20×20.
(c) Spinodal decomposition in quasi-1D structure (nanowire). Initial conditions:
mean composition c̄ = 0.5;mixing energy V/kT = 0.3316; sample size 80×4×4;
dynamic noise with amplitudes Ãn = 0.1 was used. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

the time of rapid cluster growth after overcoming the nucleation
barrier is much shorter than the waiting time before overcoming.
Therefore the criterion of nucleation may be varied. A careful
analysis of incubation time versus noise amplitude will be
discussed elsewhere.

(II) To start the spinodal decomposition, even the smallest
deviation of composition from homogeneous value is sufficient.
Fig. 4. Time dependence of composition deviation for different dynamic noise
amplitudes. All coagulation events correspond to the steps on the timedependences
of composition deviation (see also the corresponding Movies in Supplementary
material [14]).

Accordingly, at the initial stage the noise is not that important.
Yet, the late stages become much more interesting, especially in
1D. It can be predicted that in thin long nanowires with radius
less than Cahn’s characteristic length of spinodal decomposition
the lamellar structure formation is possible only along the
axis of the nanowires. Roughening of this structure cannot
proceed by ordinary Ostwald ripening, because all interfaces are
practically planar, so that Gibbs-Thomson effect cannot play any
role. Nevertheless, one can observe ‘‘stochastic-like’’ roughening
consisting of ‘‘coagulation events’’ happening from time to time
between the nearest particles along the axis (see Fig. 4 andMovie 2
in Supplementarymaterial [14]). This process depends on the noise
level: the higher the noise amplitude, the faster the sequence of
coagulation events.

5. Conclusions and summary

In this work, we presented a new method, called Stochastic
Kinetic Mean Field (SKMF), for atomistic modeling of diffusion-
controlled processes. We demonstrated how efficient SKMF is. The
code using the direct atomic exchange mechanism of diffusion is
available at the http://skmf.eu [13] website.

We also demonstrated that the model could be generalized
to the vacancy mechanism. We proposed a workaround for
the problem that, usually, simulation time with the vacancy
mechanism – instead of the direct atomic exchange – increases
significantly. We are working on the implementation and testing
of the code and will publish it as well as make it available on the
http://skmf.eu website.

Besides the vacancy mechanism, SKMF could also be general-
ized for ternary (etc.) systems. Note that for these generalized cases
SKMF will be even more efficient compared to KMC.

We intend to keep developing the model and then publish the
codes of the new algorithms as open source. [13] In particular,
the dependence of nucleation rate in metastable solid solution on
noise amplitude, as well as on supersaturation will be discussed
elsewhere. The nucleation of intermediate phases will be studied
by SKMF in bulk samples, in nanofilms and nanoclusters, as
well as at interfaces and in nanosized contact zones with sharp
concentration gradients. Also, competitive ordering on FCC lattice
in bulk samples, diffusion couples, nanofilms and nanoclusters will
be studied in detail, with account of segregation at interfaces due
to diffusion asymmetry (M ≠ 0).

http://skmf.eu
http://skmf.eu
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Appendix A. Derivation of interrelation between noise ampli-
tude and composition fluctuations for the simplest case of ideal
symmetric solution (V = 0,M = 0).

dci
dt

= −

Z
j=1


ci

1 − cj

 
Γ

mean-field
i,j + δΓ

Lang
i,j


− (1 − ci) cj


Γ

mean-field
j,i + δΓ

Lang
j,i


(A.1)

dc̄
dt

= 0.

Let us trace the evolution of fluctuation.

dδci
dt

=
dci
dt

−
dc̄
dt

= −

Z
j=1

(c̄ + δci)

1 − c̄ − δcj

 
Γ0 + δΓ

Lang
i,j


+

Z
j=1


c̄ + δcj


(1 − c̄ − δci)


Γ0 + δΓ

Lang
j,i


= −ZΓ0δci + Γ0

Z
j=1

δcj + c̄ (1 − c̄)
Z

j=1


δΓ

Lang
j,i − δΓ

Lang
i,j


+O


δ2 .

Thus, linearized kinetic equations for the fluctuations of composi-
tion will have the following form:

dδci
dt

≈ −ZΓ0δci + Γ0

Z
j=1

δcj

+ c̄ (1 − c̄)
Z

j=1


δΓ

Lang
j,i − δΓ

Lang
i,j


. (A.2)

Multiply both sides of Eq. (A.2) on the δci andmake averaging over
ensemble, using relations
⟨δci⟩ = 0, ⟨δcj⟩ = 0, ⟨δciδcj⟩ = 0 (A.3)
(for ideal solution there is no correlation between different sites)
δci

dδci
dt


= −ZΓ0⟨(δci)2⟩ + Γ0

Z
j=1

⟨δciδcj⟩

+ c̄ (1 − c̄)
Z

j=1


δci

δΓ

Lang
j,i − δΓ

Lang
i,j


d⟨δc2i ⟩
dt

= 0 = −ZΓ0⟨(δc)2⟩

+ c̄ (1 − c̄)
Z

j=1


δci

δΓ

Lang
j,i − δΓ

Lang
i,j


.

Thus,
Z

j=1


δci

δΓ

Lang
j,i − δΓ

Lang
i,j


=

ZΓ0

c̄ (1 − c̄)
⟨(δc)2⟩. (A.4)

Langevin noise of exchange rates means:

⟨δΓ
Lang
j,i (t) δΓ

Lang
m,i


t ′

⟩ = A2

nδjmδ

t − t ′


,

⟨δΓ
Lang
i,k (t) δΓ

Lang
i,m


t ′

⟩ = A2

nδkmδ

t − t ′


.

(A.5)

Set of Eq. (A.2) for the composition fluctuations in all sites can be
rewritten in the following form:

dδci
dt

≈ −


k

Mikδck + fi (t) . (A.6)

Or, in column-matrix notations,

dδĉ
dt

≈ −M̂δĉ + f̂ (t) . (A.7)

Now consider δci as a formal solution of Eq. (A.7) with zero initial
condition (which will be relaxed to zero anyway),

δĉ (t) =

 t

0
exp


−

t − t ′


M̂

f̂

t ′

dt ′, (A.8)

where

fi (t) = c̄ (1 − c̄)
Z

k=1


δΓ

Lang
k,i − δΓ

Lang
i,k


. (A.9)

Here exponent of the matrix means the Taylor series expansion:

exp

−

t − t ′


M̂


= 1 +

∞
n=1

(−1)n

t − t ′

n
n!

M̂n,

and product of matrices and column is a matrix product.
Most important for us is that the matrix function exp(−(t − t ′)

M̂) tends to unit operator (just number 1) when t ′ tends to t this is
important due to absence of memory in Langevin noise.

Now substitute Eqs. (A.8), (A.9) into Eq. (A.4) with account of
Langevin conditions (A.5):

ZΓ0

c̄ (1 − c̄)
⟨(δc)2⟩ =

Z
j=1


δci

δΓ

Lang
j,i − δΓ

Lang
i,j


=

Z
j=1

 t

0
exp


−

t − t ′


M̂

f̂

t ′

dt ′

×


δΓ

Lang
j,i (t) − δΓ

Lang
i,j (t)


= c̄ (1 − c̄)

Z
j=1

 t

0
dt ′ exp


−

t − t ′


M̂


×

Z
m=1


δΓ

Lang
m,i


t ′

− δΓ

Lang
i,m


t ′


×


δΓ

Lang
j,i (t) − δΓ

Lang
i,j (t)


= c̄ (1 − c̄)

Z
j=1

Z
m=1

 t

0
dt ′ exp


−

t − t ′


M̂


×


δΓ

Lang
m,i


t ′

− δΓ

Lang
i,m


t ′
 

δΓ
Lang
j,i (t) − δΓ

Lang
i,j (t)


= (1 − c̄)

Z
j=1

Z
m=1

 t

0
dt ′ exp


−

t − t ′


M̂


×

A2
nδjmδ


t − t ′


− 0 − 0 + A2

nδjmδ

t − t ′


. (A.10)
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Now take into account that t

0
g

t − t ′


δ

t − t ′


dt ′ =

1
2
g (0) . (A.11)

Thus
ZΓ0

c̄ (1 − c̄)
⟨(δc)2⟩ = c̄ (1 − c̄)

×

Z
j=1

Z
m=1


1
2
A2
nδjm − 0 − 0 +

1
2
A2
nδjm


= c̄ (1 − c̄) ZA2

n.

Then

⟨(δc)2⟩ = (c̄ (1 − c̄))2
1
Γ0

A2
n. (A.12)

Note oncemore that An in Eq. (A.12) is amplitude, which in discrete
scheme is a coefficient in Eq. (4) in the main text:

δΓ
Lang
i,j =

An
√
dt

√
3 (2 · random − 1) . (A.13)

Appendix B. Interrelation between KMC and SKMF

Let Xn be equal to 1 if after nth Monte Carlo run a given site
will contain atom A and be equal to 0 if it contains atom B (we will
neglect here the probability of vacancy). Evidently, the probability
of first event is just composition c̄ , probability of alternative event
is 1− c̄. Then themean values of the random entities Xn and X2

n are
following:

⟨Xn⟩ = 1 · c̄ + 0 · (1 − c̄) = c̄,

⟨X2
n ⟩ = 12

· c̄ + 02
· (1 − c̄) = c̄.

(B.1)

Since the differentMonte Carlo runs are fully uncorrelated, one can
expect that

⟨XnXk⟩|n≠k = ⟨Xn⟩⟨Xk⟩ = c̄ · c̄ = c̄2. (B.2)

Then the variance (square of deviation)

σ 2
KMC = ⟨(c − c̄)2⟩ = ⟨(c)2 − 2⟨c⟩c̄ + c̄2⟩ = ⟨(c)2⟩ − c̄2

=


N

n=1
Xn

N


2

− c̄2 =


N

n=1
⟨(Xn)

2
⟩

N2
+


n≠k


⟨XnXk⟩

N2

− c̄2

=


Nc̄
N2

+


N2

− N

c̄2

N2


− c̄2 =

c̄ (1 − c̄)
N

. (B.3)
This gives us Eq. (6′) of the main text. We remind here that N is a
number of runs of KMC.

On the other hand, as shown in Discussion 1 (see Eq. (A.12)), the
variance in SKMF method for the ideal solution is

⟨(δc)2⟩ ≡ σ 2
SKMF =

(c̄ (1 − c̄))2

Γ0
A2
n. (B.4)

Equalizing σ 2
SKMF = σ 2

KMC , one gets:

N =
Γ0

c̄ (1 − c̄) A2
n

(B.5)

which is Eq. (7) in the main text.

Appendix C. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2016.03.003.
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