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A DISCRETE APPROACH TO GRAIN GROWTH BASED ON
PAIR INTERACTIONS
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Abstract—A discrete 3D model for normal grain growth based on pair interactions is presented where the
inhibition effect due to second phase particles is also considered. A probabilistic approach has been adopted
to evaluate the contact probability between neighbouring grains and the continuity equation has been reformul-
ated and adapted to the structure of the interactions in a discrete system. The present model predicts a quasi-
stationary grain size distribution more symmetrical than that by the analytical mean field theory by Hillert.
As expected, its skewness is modified by the presence of inhibition by second phases.

It is demonstrated that this new approach represents a valuable alternative to the mean field models even
if, at present, it gives only a small improvement in explaining the shape of the quasi-stationary grain size
distribution found in experiments. 2001 Acta Materialia Inc. Published by Elsevier Science Ltd. All
rights reserved.
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1. INTRODUCTION

A large effort has been dedicated in the past to the
comprehension of the physical basis governing grain
coarsening in polycrystalline materials. The well
known analytical formulation of the mean field theory
by Lifshitz and Slyozov [1] and by Wagner [2] for
particles (hereafter referred to as LSW theory) modi-
fied by Hillert [3], has been directly applied to
describe normal grain growth.

This theory gives not only a satisfactory estimate
of the overall kinetics (evolution of the average grain
size) but also predicts the achievement of an asymp-
totically stationary state of the system after a suf-
ficient elapsed time in isothermal conditions. The
grain size distribution (GSD) becomes self-similar,
i.e. its shape remains unchanged if rescaled to the
average size. The analytical expression for the GSD
asymptotic shape is left-skewed and has a cut-off at
a reduced sizeD/�D� equal to 2. Conversely, exper-
imentally measured size distributions show elongated
right tails up to reduced radius values from 2.5 to 3.

An extensive literature can be found where several
approaches have been proposed, starting from modi-
fied analytical treatments [4–6] to stochastic formu-
lations [7] and, more recently, also to computer simu-
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lations [8–12]. All the mean field approaches fail in
predicting the shape of the size distribution since the
stationary distributions necessarily obey the Hillert’s
asymptotic solution.

The difficulties in applying the mean field theories
are further confirmed by the introduction of empirical
functions to describe the GSD [13, 14]. Among them
it is worth mentioning the log-normal distribution
function firstly introduced by Feltham, nowadays
commonly accepted in quantitative metallographic
investigations [15].

The aim of this work is to present a discrete
approach for 3D grain growth which tries to over-
come the above-mentioned difficulties and where the
averaging operations required to describe the system
statistically are carried out on the surface areas shared
among grains rather than on the growth rates.

2. NORMAL GRAIN GROWTH

To formulate the normal grain growth kinetic equ-
ation for single-phase polycrystalline materials, the
currently accepted hypothesis that the grain boundary
velocity is proportional to the pressure difference
caused by the grain curvature is considered [3, 5]. The
following assumptions have been made: the average
curvature of grains is calculated considering a spheri-
cal shape, the GSD is divided into discrete classes of
width �R and the grain sizes are associated to the
class centre. The growth process is expressed in terms
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of elementary matter exchanges between pairs of
interacting grains. Accordingly, the relative volume
change of a grain belonging to the ith size class and
a grain in the jth class is proportional to the product
between the grain boundary velocity and the shared
surface. It can be written as:

dvi

dt
|j � MgAij�2

Rj

�
2
Ri
� (1)

where Ri and Rj are the grain radii, g is the interfacial
energy (assumed constant for the whole system), Aij

is the effective exchange area between the grains and
M is the grain boundary mobility given by [16]

M �
DGBb2

kBT
(2)

with DGB representing the grain boundary diffusivity
and b the magnitude of Burgers’ vector.

For each pair of classes, the volume balance con-
dition implies that

wij

dvi

dt |
j

� �wji

dvj

dt |
i

(3)

where wij and wji are the number of contacts (common
faces) per volume unit between the two classes. Due
to the symmetry of the process:

Aij � Aji (4a)

wij � wji (4b)

which states the equivalence of shared surfaces and
number of contacts whichever class i or j is con-
sidered as reference.

The evaluation of the contact area shared between
two neighbouring grains i and j is carried out by a
geometrical approximation (see Appendix A). It can
be expressed as:

Aij � pr2
ij (5)

where

rij �
RiRj(Ri � Rj)

Ri√Ri(Ri � 2Rj) � Rj√Rj(Rj � 2Ri)
(6)

Hence, as rij = rji, equation (5) fulfils the symmetry
requirement (4a).

The number of contacts per unit volume between
any pair of classes, wij, is calculated by a purely pro-
babilistic model taking into account each size class,
both the discrete GSD (number of grains per unit vol-
ume, ni) and their average number of faces mi (grain
co-ordination number). Assuming a spherical shape
of the grains, for any given size class the latter is
defined as the ratio between the grain boundary sur-
face and the average area of the faces, �Ai�, as:

mi �
4pR2

i

�Ai�
(7)

The total number of contacts (faces) per volume unit,
counted only once, can be expressed as:

mV �
1
2�

i

nimi (8)

The probability of finding a common face between
the size classes i and j is proportional to the product
of the occurrence probabilities of their respective
faces in the system:

pij � � nimi

�
k

nkmk

�� njmj

�
k

nkmk

� (9)

Therefore, the number of contacts per volume unit
between the classes i and j is:

wij � mVpij �
nimi njmj

2�
2

nkmk

(10)

Clearly, equation (10) fulfils the condition (4b) and
the sum of wij over i and j gives mV.

At this point, the quantity �Ai� must be evaluated.
It is assumed that a reasonable estimate can be calcu-
lated by a weighted average of the individual surfaces
Aij on the fraction of contacts:

�Ai� � �
j � njmj

�
k

nkmk

�Aij (11)

By substituting equation (7) into (11) the following
implicit form is obtained for the average contact area:
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�Ai� �

�
j

njR2
j Aij/�Aj�

�
k

nkR2
k/�Ak�

(12)

which can be solved by an iterative procedure rapidly
converging to the complete set of �Ai�.

It has to be observed that the average surfaces from
equation (12) are related to the grain boundary area
of each size class and to the overall grain boundary
surface per volume unit in the system through the fol-
lowing relationships:

�
j

wij�Ai� �
4pniR2

i

2
(13a)

�
i

�
j

wij�Ai� � SV (13b)

Finally, the average number of faces per grain in the
system, �m�, can be calculated as:

�m� �
2mV

NV

� �
i

ni

NV

mi (14)

where NV is the total number of grains per volume
unit:

NV � �
i

ni (15)

3. THE MODIFIED CONTINUITY EQUATION

In the analytical approach of the LSW and Hillert
theories [1–3] the mass conservation in the system is
imposed through the continuity equation

∂n(v)
∂t

�
∂
∂v�n(v)

dv
dt� � 0 (16)

where n(v) is the GSD and dv/dt the growth rate, a
function of grain volume. In discrete models based
on the mean field hypothesis, a single and constant
value of the growth rate is associated to each size
class. As expected, the numerical integration with
respect to time of the kinetic equations recovers the
analytical asymptotic solution after an initial transi-
ent.

In the present discrete model, the formulation of
the continuity equation (16) cannot be applied due to

the structure of the kinetic equations and to the cross-
links among the number of common faces shared by
couples of grain classes. Therefore, the volume bal-
ance has been guaranteed by introducing the follow-
ing continuity equation:

∂n(v)
∂t

� �
v

0

∂
∂v�w(v, ṽ)

dv
dt

|ṽ� dṽ (17)

��
�

v

∂
∂ṽ�w(ṽ, v)

dṽ
dt

|v� dṽ

A detailed description of the procedure adopted to
calculate the evolution of the discrete GSD is reported
in Appendix B together with the derivation of the
mass balance equation (17) in the continuous domain.

4. INHIBITION OF GRAIN GROWTH BY SECOND
PHASE PARTICLES

The pinning effect exerted by second phase par-
ticles on the grain boundary can be directly accounted
for in the growth equation. Assuming Ri�Rj, equation
(1) can be rewritten as [3–6, 16]:

dvi

dt |
j

� MgAij�2
Rj

�
2
Ri

�Z� (18)

where Z is the inhibition contribution which is always
opposed to the boundary motion. In these conditions,
the volume growth rate must be �0. A negative bal-
ance implies that in any case, exchange occurs
between the interacting grains and the value of
growth rate is imposed to be zero.

5. RESULTS

Simulations have been carried out on an ideal sys-
tem to check the model behaviour. The mobility of
austenite from Ref. [16] at 1073°C
(M = 9.03×10�11 m4 J�1 s�1) and an average grain
boundary energy of 0.5 J m�2 have been used. Differ-
ent levels of inhibition have also been considered
with Z having values 0, 50, 100 and 200/mm. An
initial Gaussian GSD with average size 5 µm and
standard deviation 2.5 µm has been used in all cases
with �R = 1 µm and the calculations have been
extended up to 200 s.

The calculated evolution of the average grain size
is shown in Fig. 1 on a log–log scale. As expected,
an increase in the inhibition level retards the coarsen-
ing process.

A quasi-stationary state, characterised by a linear
behaviour in the double logarithmic plot, is correctly
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Fig. 1. Double-logarithmic plot of the grain coarsening kinetics
at different levels of inhibition.

predicted by the model after the initial transient
depending on the inhibition level. This behaviour is
also confirmed by the evolution of the variation coef-
ficient kGSD (ratio between the standard deviation of
the GSD and the average size), which reaches an
almost constant level after the initial transient.

The growth exponent is equal to 0.48 in the
absence of inhibition (and close to the expected theor-
etical value of 0.5) and decreases continuously with
increasing inhibition level. In Table 1 some relevant
parameters of the quasi-stationary GSD and the
growth exponents are reported as a function of Z.
These values have been obtained from simulations
extended up to 200 s and must be considered only as
an indication of the general trend and not as an absol-
ute reference, being slightly dependent on the width
of size classes.

It can be readily seen that low inhibition levels, as
experimentally observed [16], cause a sharpening of
the GSD with respect to uninhibited normal grain
growth, whereas the broadening increases at higher
inhibition values.

The quasi-stationary GSD for normal grain growth
without inhibition is shown in Fig. 2 in reduced form
together with the asymptotic analytical solution [3].
The present model predicts a GSD with a right tail
extending beyond the cut-off value of the Hillert’s
distribution. Consequently, its standard deviation is
slightly increased. The effect of different inhibition
levels on the reduced shape of the stationary GSD is
reported in Fig. 3.

Concerning the topological features of the model
for the quasi-stationary normal grain growth regime,
the distribution of the number of faces per grain in

Table 1. Indicative values of the parameters of the quasi-stationary GSDs and kinetic exponents after 200 s of simulated grain growth as a function
of the inhibition level

Z (mm�1) kGSD �m� Growth exponent

0 0.387 11.43 0.477
25 0.304 11.63 0.245
50 0.313 11.62 0.181
100 0.316 11.61 0.120
200 0.360 11.52 0.095

Fig. 2. Quasi-stationary grain size distribution in reduced form
(sD = 0.39) and comparison with the asymptotic solution by

the Hillert’s model (sD = 0.35).

Fig. 3. Shape of the quasi-stationary reduced GSD as a function
of the inhibition level.

the uninhibited quasi-stationary GSD is shown in Fig.
4 and the relationship between the average number of
faces per size class and the reduced grain size is
reported in Fig. 5.

It is worth noting that, as expected on the basis of
theoretical arguments, for the latter case, a parabolic
dependence of mi on the reduced size D/�D� is
obtained. A very good fit is calculated even imposing
the theoretical value of four (minimum number of
faces per grain) to the intercept. In addition, this
relationship has been found to be invariant during the
evolution of the system and independent of the inhi-
bition level. The analytical expression of the curve
(correlation coefficient �0.9999) is shown below:
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Fig. 4. Distribution of the number of faces per grain in the
quasi-stationary GSD without inhibition.

Fig. 5. Average number of faces per size class, mi, in the quasi-
stationary GSD without inhibition (squares) as a function of
grain size and the corresponding parabolic fit (solid curve).

m � 4 � 4.37� D
�D�� � 2.664� D

�D��2

(19)

Finally, it is interesting to observe that the reduced
quasi-stationary distribution of the proposed model is
very similar to the computer simulation result
obtained by the sophisticated Surface Evolver pro-
gram [17] based on the evolution of grain boundaries
towards a minimum energy.

6. DISCUSSION

Mean field models commonly found in the litera-
ture are generally based on the calculation of an aver-
age value of the growth rate for each size class as a
function of the grain surrounding. This permits the
continuity equation (16) to be used to calculate the
GSD evolution. This averaging operation on the
growth is responsible for the sharp cut-off of the GSD
due to the fact that the largest particles are restricted
to grow only with the average rate of their class.
Actually, some grains can grow faster than the aver-
age, due to a favourable surrounding, thus determin-
ing the elongated right tail of the GSD.

The present model tries to overcome this problem
by treating grain growth in terms of pair interactions

instead of a mean field. Averaging operations over
the system are used only to evaluate the co-ordination
number mi for each size class from the corresponding
average area of the grain faces (�Ai�) through an
internally coherent formalism, as confirmed by equa-
tions (13a) and (13b). Thus, the growth rates of the
grain couples are only indirectly affected by system
averages and can exhibit a certain spread, depending
on the size of the possible neighbouring grains, lead-
ing to a quasi-stationary GSD shape which is more
symmetrical than that of Hillert’s model.

This result demonstrates that the pair interaction
model describes grain growth with comparable pre-
dicting capabilities with respect to the mean field
model, although being substantially different from it.
On the other hand, it has to be observed that the shape
of the asymptotic PSD, which is similar to that by
Hillert, is not completely satisfactory in terms of both
extension of the tail and position of the maximum.
The reason for this can be sought in the fact that the
distribution of contacts of a given grain is taken into
account only as far as the estimation of the probability
of a common boundary with a neighbour is con-
cerned. Then, each contact is treated as if it were
independent of the others. In contrast, the behaviour
of each grain strongly depends on its actual surround-
ing considered as a whole. Although at present the
model does not include this fundamental aspect, its
structure makes it possible to easily introduce this
further improvement, as all the main topological fea-
tures of the system are directly accessible.

7. CONCLUSIONS

The proposed pair interaction model predicts a
slightly right-tailed GSD in normal grain growth con-
ditions. The model represents only a limited improve-
ment to the mean field approach, being the shape of
the asymptotic grain size distribution yet close to that
by Hillert.

A new formulation of the continuity equation has
been introduced which is consistent with the pair
interaction approach. The model gives a correct pre-
diction of the main topological features of a 3D
polycrystal and its behaviour in the case of inhibition
is similar to that exhibited by the mean field
approaches.

The present approach can be easily improved to
treat the grain growth process in a really statistical
way.
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APPENDIX A

A.1. Estimate of the effective contact area between
grains

Let us consider two tangent spheres of radius Ri

and Rj, as shown in Fig. A1. The intersections of the
common tangents drawn to one another from their
respective centres identify a segment which can be
viewed as the diameter of the circle representing their
effective contact area. The radius of this circle, rij, is
given by the following relationship:

rij �
RiRj(Ri � Rj)

Ri√Ri(Ri � 2Rj) � Rj√Rj(Rj � 2Ri)
(A1)

Fig. 6. Geometric construction for the evaluation of the contact
area between neighbouring grains.

and its area will be:

Aij � pr2
ij (A2)

Although this is an extremely raw approximation of
the real surface shared by two grains, nevertheless it
has some interesting properties.

As the ratio Ri/Rj approaches zero, rij tends to Ri.
This means that as the radius of the smaller grain i
is reduced, the contact area approaches its diametrical
section and the minimum allowable number of its
faces tends to

mi	
4pR2

i

pR2
i

� 4 (A3)

On the other hand, in a monodisperse system where
all grains have the same size R (Ri = Rj = R),
rij = R/√3 and each grain will have a number of faces
given by

m3D �
4pR2

pr2
ij

� 12 (A4)

which is the exact geometric value theoretically
expected on the basis of the topological requirements
for a regular 3D structure [18].

In the 2D case, the number of nearest neighbours
is:

m2D �
2pR
2rij

� p√3	5.44 (A5)

which is lower than the theoretical value of six corre-
sponding to a hexagonal tessellation of the plane.

APPENDIX B

B.1. Algorithm for the volume conservation and
reformulation of the continuity equation

In this appendix the algorithm for the conservation
of the volume and number of grains in a discrete form
suitable for a direct calculation is presented. This has
been originally developed on the basis of simple heu-
ristic considerations. An equivalent synthetic equation
in the continuous domain, corresponding to the com-
monly used continuity equation (16), is also derived
a posteriori.

Multiplying equation (1) by the integration time
step �t, the overall volume exchange per unit volume,
�Vij is obtained for each interacting pair as:

�Vij � wij

dvi

dt |
j

�t � ��Vji (B1)
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Let us conventionally assume that in the pair, the
grain in the ith class is greater than that in the jth
class (Ri�Rj) so that the grain i always grows and
�Vij in equation (B1) is always positive. The move-
ment of grains along the distribution is treated separ-
ately for the growing and the shrinking sides. In the
case of growth, grains in the class i move to the class
k which, in principle, is not adjacent to the ith. Simi-
larly, the shrinking grains move from the jth class to
the sth class, not necessarily contiguous with respect
to j.

In order to allow for the total volume and the num-
ber of grains to be conserved, another auxiliary class
must be introduced which, instead, is adjacent to the
destination class defined above. Thus, for growing
grains this auxiliary class will be the (k + 1) - th,
whereas for the shrinking grains it will be the (s�
1) - th.

Owing to the symmetry properties expressed by
equations (4b) and (14), in the following derivation
the quantities �Vij and wij will be used in both cases
to avoid possible confusion, taking into account the
correct algebraic sign where necessary.

Let us consider the growing side first. In a time
step, the volume increase �Vij of the wij interacting
particles in the ith class must be partitioned between
the classes k and k + 1 with k�i. The index of the
destination class is calculated through the final vol-
ume v∗

k

v∗
k � vi �

�Vij

wij

(B2)

from which the corresponding radius R∗
k is

R∗
k � �3v∗

k

4p �1/3

(B3)

and finally the class index is given by:

k � 
R∗
k

�R� (B4)

where �R is the class width and the square brackets
denote the integer part. Now the volume conservation
condition must be coupled with that for the conser-
vation of the number of grains. The following system
of linear equations is obtained where the unknowns,
�nk and �nk+1, represent the variation in the number
of elements in the destination classes:

vk�nk � vk � 1�nk � 1 � wijvi � �Vij (B5a)

�nk � �nk � 1 � wij (B5b)

The solution is:

�nk �
wij(vk � 1�vi)��Vij

vk � 1�vk

(B6a)

�nk � 1 � wij��nk (B6b)

and the updated distribution at the time t + �t is:

ni(t � �t) � ni(t)�wij (B7a)

nk(t � �t) � nk(t) � �nk (B7b)

nk � 1(t � �t) � nk � 1(t) � �nk � 1 (B7c)

Similarly, for the shrinking side, the volume decrease
�Vij of the wij interacting grains in the jth class must
be partitioned between the classes s and s�1 with
1�s	j. Thus, as before one obtains:

v∗
s � vj�

�Vij

wij

(B8)

R∗
S � �3v∗

s

4p �1/3

(B9)

s � 
R∗
s

�R� � 1 (B10)

Then the volume conservation constraints are:

vs�ns � vs�1�ns�1 � wijvj��Vij (B11a)

�ns � �ns�1 � wij (B11b)

and the solution is:

�ns �
wij(vj�vs�1)��Vij

vs�vs�1

(B12a)

�ns�1 � wij��ns (B12b)

so that the updated GSD is calculated as:

nj(t � �t) � nj(t)�wij (B13a)
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ns�1(t � �t) � ns�1(t) � �ns�1 (B13b)

ns(t � �t) � ns(t) � �ns (B13c)

Only when s = 1 is the number of particles not con-
served due to the complete disappearance of the
involved grains. Thus, as the volume of the 0th class
v0 = 0, the only relevant quantity, �n1, is directly
obtained from equation (B12a):

�n1 � ni1�
�Vi1

v1

(B14)

The final equations (B7) and (B13) for updating the
GSD are used to control the integration time step �t.
This is chosen as the largest value which produces a
non-negative number of elements in the size classes.

The calculation is carried out through two nested
cycles. The outer one, on the index i representing the
larger grain, spans the whole distribution, the inner
one, on the smaller grain j, ranges from the first class
up to the (i�1) - th class in order to count each poss-
ible interacting pair only once.

Now it is possible to recover the expression that,
in the continuous range, is equivalent to the discrete
continuity equation here formulated and to compare
it with equation (16).

As the integration time step �t→0, also �Vij→0
and therefore it can be expected that k = i and s = j
in the above equations. Thus, from equations (B6)
and (B7), writing in explicit form �Vij according to
equation (17) and rearranging, the following result
is obtained:

ni(t � �t)�ni(t)
�t |

j

� �
wij

vi � 1�vi

dvi

dt |
j

(B15a)

ni � 1(t � �t)�ni � 1(t)
�t |

j

� �
wij

vi � 1�vi

dvi

dt |
j

(B15b)

where the rate of change of grains in classes i and
i + 1 are referred to the interactions with j grains
only. A similar result is obtained for the shrinking
side.

Referring to a generic size class i, the overall rate
of change of ni due to all the possible interactions
will result from the balance between the positive con-
tributions deriving from smaller grains j	i and the
negative contributions from larger grains j�i. By
summing up all the terms, the overall rate of change
of grain number in class i becomes:

ni(t � �t)�ni(t)
�t

� �nc

j � 1

ni(t � �t)�ni(t)
�t |

j

(B16)

� �i

j � 1

wij

vi�vi�1

dvi

dt |
j

��nc

j � 1

wij

vj � 1�vj

dvj

dt |
i

where nc is the total number of classes in the dis-
crete GSD.

The above equation can be converted in continuous
form by letting the class width �v = (vi�vi�1)→0, by
substituting ni and wij with the dimensionally equival-
ent n(v) dv and w(v, ṽ) dv dṽ, respectively, and by
changing the sums in the right-hand side into the cor-
responding integrals. Then, the net rate of formation
of grains in the range dv is given by:

∂[n(v) dv]
∂t

� ��
v

0

∂
∂v�w(v, ṽ)

dv
dt

|ṽ� dṽ
 dv (B17)

���
�

v

∂
∂ṽ�w(ṽ, v)

∂ṽ
dt

|v� dṽ
 dv

Dividing through by dv, the final form of the conti-
nuity equation is obtained:

∂n(v)
∂t

� �
v

0

∂
∂v�w(v, ṽ)

dv
dt

|ṽ� dṽ (B18)

��
�

v

∂
∂ṽ�w(ṽ, v)

∂ṽ
dt

|v� dṽ

Thus, for the present model, the integro-differential
equation (B18) is the proper continuity equation. Its
structure is similar to that used to describe aerosol
coagulation [19] and the integrands have the same
form as the continuity equation (16) used in the mean
field approaches.

APPENDIX C

C. 1. Nomenclature

Aij contact area between grains in the size
classes i and j [m2]

�Ai� average area of the grain faces in the size
class i [m2]

b magnitude of Burgers’ vector [m]
D grain diameter [m]
�D� average grain diameter [m]
DGB grain boundary diffusivity [m2 s�1]
kB Boltzmann constant [J K�1]
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kGSD variation coefficient of the GSD [dimen-
sionless]

mi average number of faces of grains in the ith
size class [dimensionless]

mV total number of grain faces per unit vol-
ume [m�3]

�m� average number of faces of grains in the
whole system [dimensionless]

M grain boundary mobility [m4 J�1 s�1]
ni number of grains per unit volume in the ith

size class [m�3]
n(v) continuous GSD as a function of grain vol-

umes [m�6]
nc total number of classes in the discrete

GSD [dimensionless]
NV number of grains per unit volume [m�3]
pij probability of a common face between the

size classes i and j [dimensionless]
rij radius of the circular contact surface

between grains in the size classes i and j [m]
R grain radius [m]
Ri radius of a grain in the ith size class [m]

R∗
i final radius of a growing/shrinking grain

after the mass exchange event [m]
SV grain boundary surface per unit volume

[m�1]
t time [s]
T temperature [K]
vi volume of a grain in the ith size class [m3]
v∗

i final volume of a growing/shrinking grain
after the mass exchange event [m3]

wij number of contacts between the size classes
i and j per unit volume [m�3]

w(v, ṽ) continuous distribution of the number of
contacts between grains [m�9]

Z inhibition by second phase particles [m�1]
g grain boundary interfacial energy [J m�2]
�ni variation of number of grains per unit vol-

ume in the ith size class [m�3]
�R width of size classes in radius [m]
�v width of size classes in volume [m3]
�Vij volume exchanged per unit volume between

grains in the classes i and j [dimensionless]
sD standard deviation of the GSD [m]


