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Abstract
Many small-angle neutron experiments have proven that concentration

¯uctuations develop in liquid alloys. The present work is devoted to the study
of the relaxation of these concentration ¯uctuations. The mathematics associated
with the analysis is close to the normal mode treatment of lattice vibrations.
When applied to a ternary liquid exhibiting strong heteroatomic bonding
between two components having high atomic mobilities, a long-lived clustering
mode of relaxation and a short-lived substitutional mode are de®ned. It is found
that the long-lived clustering relaxation mode is generated from a concentration
¯uctuation which is also the most probable. This gives physical meaning to the so-
called `clustering’ in liquids where atomic cohesion is governed by metallic
bonding. The possible in¯uence of these long-lived clusters on crystalline
nucleation is also discussed.

} 1. Introduction
Recently a new mechanism of nucleation in the undercooled liquid alloys has

been proposed and applied to binary systems presenting a tendency to phase separa-
tion (Cini et al. 2000). This homophase ¯uctuation-mediated (HFM) mechanism of
nucleation consists of two consequent steps.

(i) First, thermal homophase concentration ¯uctuations generate small regions
where the composition is close to that of the expected crystalline nucleus.

(ii) Then, polymorphous (or partitionless) nucleation occurs, at a frozen
composition, in the prepared region.

It has been found that the average lifetime of thermal concentration ¯uctuations
is signi®cantly greater than the transient time required for the establishment of
stationary polymorphous nucleation inside relevant ¯uctuations.
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A fundamental point at the basis of this model remains the importance of the
relaxation time of those nucleant ¯uctuations. In fact, relaxation of concentration
¯uctuations in a liquid containing ¸ components is a superposition of ¸ ¡ 1 pro-
cesses, each of them being characterized by its own relaxation time (Kirkaldy 1975,
Gusak and Zakarov 1979, Gusak and Gurov 1994). The mathematics associated
with this analysis are close to the classical normal-mode treatment of lattice vibra-
tions, but in the present application the transformation to normal ¯uctuation modes
appears to be not unitary.

Among the ensemble of relaxation modes, one can expect that some ¯uctuations
relax more slowly than others. If so, the HFM mechanism of nucleation is favoured
in the corresponding directions in concentration space, particularly when these con-
centration directions are close to the stoichiometry of expected nucleating com-
pounds.

The present work is focused on the normal-mode analysis applied to the relaxa-
tion of thermal concentration ¯uctuations. For simplicity the study is limited to a
ternary liquid.

} 2. Concentration fluctuation modes: general aspects
The average mole fractions of a ternary liquid 1±2±3 are given by c1, c2 and

c3 ˆ 1 ¡ c1 ¡ c2. dc1…t; x† and dc2…t; x† designate the concentration ¯uctuations of
components 1 and 2 respectively. The relaxation of these concentration ¯uctuations,
which is a function of time t and distance x, obeys the usual Fick law:

q
qt

qc1

qc2

³ ´
ˆ r

D11 D12

D21 D22

³ ´
¢ r qc1

qc2

³ ´µ ¶
; …1†

where D11; D12; D22 and D21 are the classical diŒusion coe� cients. The correspond-
ing ¯uxes are such that Ji ˆ ¡nDnk rck, where n is the number of atoms per unit
volume.

For small ¯uctuations, the interdiŒusion coe� cients in the matrix D̂D are taken
constant, so that

qci

qt
ˆ

X2

kˆ1

Dik r2 dck; …2†

where i and k designate the components.
Some linear transformation (non-unitary in general) diagonalizing the diŒusivity

matrix is de®ned. New parameters un representing linear combinations of concentra-
tion ¯uctuations with constant coe� cients aij (de®ning a matrix âa) are introduced:

un ˆ
X

i

…âa¡1†ni dci: …3†

When condensed in a matrix form, equation (3) can be written ûu ˆ âa¡1 dĉc. The sign ^
denotes matrix for âa and D̂D and row for ûu and ĉc.

Using the parameters un, equation (2) becomes

q
qt

…ûu† ˆ …âa¡1D̂Dâa† r2…ûu†: …4†
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The matrix âa is chosen so that âa¡1D̂Dâa is diagonal:

âa¡1D̂Dâa ˆ D̂D0 ² D…1† 0

0 D…2†

Á !

: …5†

As can easily be shown, this diagonalization determines the eigenvalues D…1† and D…2†

and the ratios a21=a11 and a12=a22 such that

D…1†; D…2† ˆ D11 ‡ D12

2
§ …D11 ‡ D12†2

4
¡ det D̂D

Á !1=2

…6†

a21

a11

ˆ
D…1† ¡ D11

D12

ˆ
D21

D…1† ¡ D22

;

a12

a22

ˆ D…2† ¡ D22

D21

ˆ D12

D…2† ¡ D11

;

…7†

where det D̂D ˆ D11D22 ¡ D12D21 ˆ D…1†D…2†. The coe� cients a11 and a22 can be taken
to be arbitrary and in fact, do not in¯uence the results. For simplicity, one can
choose them to be equal to unity.

The diagonalization means that the parameters u1 and u2 behave as relaxing
independently; this leads to

qu1

qt
ˆ D…1† r2u1;

qu2

qt
ˆ D…2† r2u2: …8†

The corresponding relaxation times are such that ½ …1† ˆ l2=6D…1† and ½ …2† ˆ l2=6D…2†,
where l is the characteristic size of the ¯uctuation region (referring to the HFM
nucleation mechanism, l corresponds to the critical radius of a spherical crystalline
embryo). Note that relaxation of the concentration ¯uctuations is a linear combina-
tion of u1 and u2 such that

dc1 ˆ a11u1 ‡ a12u2; dc2 ˆ a21u1 ‡ a22u2:

Let us consider an initial ¯uctuation (at time t ˆ 0) of Gaussian type with dispersion
l2:

dc1…0; x† ˆ A1

…2pl2†1=2
exp ¡ x2

2l2

Á !

;

dc2…0; x† ˆ
A2

…2pl2†1=2
exp ¡

x2

2l2

Á !

:

…9†

Then the initial distribution of the parameters u1 and u2 is given by the following
relation:

ui…0; x† ˆ Bi

…2pl2†1=2
exp ¡ x2

2l2

Á !

with

Bi ˆ a¡1
i1 A1 ‡ a¡1

i2 A2;

i designates component 1 or 2.
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Solving the Fick equations for in®nite x space, one obtains

ui…t; x† ˆ
…1

¡1

exp ‰¡…x ¡ x 0†2=4D…i†tŠ
…4pD…i†t†1=2

ui…0; x 0† dx 0

ˆ Bi

‰2p…2D…i†t ‡ l2†Š1=2
exp ¡ x2

2…l2 ‡ 2D…i†t†

Á !

: …10†

The average value of ui in the interval …¡l; l) is taken as a measure of the relaxation
of the ¯uctuation:

·uui…t† ˆ
1

2l

… l

¡l

ui…t; x† dx: …11†

This leads to

·uui…t† ˆ
1

2
Bi erf

1

‰2…1 ‡ 2D…i†t=l2†Š1=2

Á !

: …12†

Then, relaxation of the concentration ¯uctuations dc1 and dc2 obeys the following
formulae:

d·cc1…t† ˆ a11·uu1…t† ‡ a12·uu2…t†

ˆ a11…a¡1
11 A1 ‡ a¡1

12 A2†
2|‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚}

K11

erf
1

‰2…1 ‡ 2D…1†t=l2†Š1=2

Á !

‡ a12…a¡1
21 A1 ‡ a¡1

22 A2†
2|‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚}

K12

erf
1

‰2…1 ‡ 2D…2†t=l2†Š1=2

Á !

; …13†

d·cc2…t† ˆ a21…a¡1
11 A1 ‡ a¡1

12 A2†
2|‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚}

K21

erf
1

‰2…1 ‡ 2D…1†t=l2†Š1=2

Á !

‡
a22…a¡1

21 A1 ‡ a¡1
22 A2†

2|‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚{z‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚‚}
K22

erf
1

‰2…1 ‡ 2D…2†t=l2†Š1=2

Á !

:

Equations (13) determine the evolution path of ¯uctuations in the concentration
space. The direction of the relaxation can be represented in the Gibbs triangle by
the tangent to the path as shown schematically in ®gure 1. The expression for the
tangent to the path is deduced from equations (13):

tan ¬ ˆ q…d·cc2†=qt

q…d·cc1†=qt

ˆ

K21D…1†…1 ‡ 2D…1†t=l2†¡3=2 exp ‰1=2…1 ‡ 2D…1†t=l2†Š
‡K22D…2†…1 ‡ 2D…2†t=l2†¡3=2 exp ‰1=2…1 ‡ 2D…2†t=l2†Š

K11D…1†…1 ‡ 2D…1†t=l2†¡3=2 exp ‰1=2…1 ‡ 2D…1†t=l2†Š
‡K12D…2†…1 ‡ 2D…2†t=l2†¡3=2 exp ‰1=2…1 ‡ 2D…2†t=l2†Š

…14†
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Let us consider the limiting cases t ! 0 and t ! 1:

(i) For short times, the direction of the path can be written

…tan ¬†tˆ0 º K21 ‡ K22D…2†=D…1†

K11 ‡ K12D…2†=D…1† : …15†

(ii) For long times the direction of path becomes

…tan ¬†t!1 º K21…D…2†=D…1††1=2 ‡ K22

K11…D…2†=D…1††1=2 ‡ K12

: …16†

A link between these tangents with independent modes is expected. To check
this, the particular limiting case where D…2† ½ D…1† (which means that the second
mode is much slower than the ®rst mode) is studied.

Then, at the beginning …t º 0), one has from equations (16) and (13)
tan ¬0 º K21=K11 ˆ a21=a11. This means that
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Figure 1. Gibbs triangle for a ternary system 1±2±3 where a schematic trajectory of a relax-
ing concentration ¯uctuation from c0 ‡ dc to c0 is represented (left-hand part of the
®gure). The kinetic curve of relaxation along this trajectory is displayed by full circles
at identical time intervals. Note that the represented diŒusion path is not S shaped
since the trajectory does not result from a classical diŒusion couple but from a change
in composition in the limited volume of initial ¯uctuation. Along section c1 ˆ c2 ˆ c,
du2 ˆ 0 is the direction of the substitutional mode and du1 ˆ 0 corresponds to the
clustering mode when atomic mobility of component 3 is very small.



dc2

dc1


t!0

ˆ
a21

a11

…17 a†

or

a21 dc1 ¡ a11 dc2 ˆ ¡a¡1
21

det âa¡1
dc1 ¡ a¡1

22

det âa¡1
dc2

ˆ ¡
1

det âa¡1
du2

ˆ 0: …17 b†
Thus, for short times, du2 º 0, so that the composition point moves along the line of
constant u2. For long times, it follows from equations (16) and (13) that

tan ¬1 º
K22

K12

ˆ
a22

a12

…18 a†

or

dc2

dc1


t!1

ˆ a22

a12

ˆ ¡ a¡1
11

a¡1
12

; du1 ˆ a¡1
11 dc1 ‡ a¡1

12 dc2 ˆ 0: …18 b†

At the end of the relaxation, the composition point tends to move along the line of
constant u1 (®gure 1). It appears that relaxation proceeds in two steps: ®rst, relaxa-
tion of the fast mode (u2 constant) and, then, relaxation of the slow mode (u1

constant). A representation of this eŒect is given in ®gure 1 where equal time inter-
vals are noted by full circles on the schematic evolution path of a ¯uctuation relaxa-
tion between c0 ‡ dc and c0. To illustrate the above-mentioned formalism, the
following example is treated.

} 3. C̀lustering’ and s̀ubstitutional’ modes in ternary liquids with
strong heteroatomic bonding between two components

Let us consider a ternary liquid ABC with strong heteroatomic bonding between
components A and B. In the following, 1 designates component A, 2 component B
and 3 component C.

The sub-regular solution approximation is used with average coordination num-
ber z, and interchange energies ¶iki 6ˆk

ˆ z‰"ik ¡ …"ii ‡ "kk†=2Š …"ik are the nearest-
neighbour pair energies between the ith and kth species; they are negative; hetero-
atomic bonding between components i and j yields negative ¶ik†:

The ¯ux of each component, in the laboratory reference frame, is equal to

Ji ˆ ji ‡ nci! …19†

with

ji ˆ ¡nLi r·i ˆ ¡n
cDi*

³
r·i; ³ ˆ kT :

Li is the corresponding Onsager coe� cient, D*i is the tracer diŒusivity of i and ·i is
the chemical potential of the ith component. ! is a drift velocity, determined by the
condition

P3
1 Ji ˆ 0 which yields

! ˆ ¡ 1

n

X3

1

ji: …20†
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In equation (19), the cross-terms caused by the vacancy wind described by Manning
(1968) have been neglected. Using equations (19) and (20) and ®nding the chemical
potentials ·i from the standard expression for the Gibbs energy of regular solutions,
the explicit forms of the diŒusivity matrix elements are found to be

D11 ˆ …1 ¡ c1†D*
1 1 ¡ c1

³
‰¶12c2 ‡ ¶13…c3 ¡ c1 ‡ 1† ¡ ¶23c2Š

± ²
‡ . . .

‡ c1c2

D*
2

³
‰¡¶21…1 ¡ c2† ‡ ¶23…1 ¡ c2† ‡ ¶13…c3 ¡ c1†Š

‡ c1D*
3 1 ¡ c3

³
‰¶31…1 ¡ c3 ‡ c1† ‡ ¶32c2 ¡ ¶12c2Š

± ²
;

D12 ˆ ¡…1 ¡ c1†c1

D*
1

³
‰¡¶12…1 ¡ c1† ‡ ¶13…1 ¡ c1† ‡ ¶23…c3 ¡ c2†Š

¡ c1D*
2 1 ¡ c2

³
‰¶21c1 ‡ ¶23…c3 ¡ c2 ‡ 1† ¡ ¶13c1Š

± ²

‡ c1D*
3 1 ¡ c3

³
‰¶31c1 ‡ ¶32…1 ¡ c3 ‡ c2† ¡ ¶12c1Š

± ²
; …21†

D21 ˆ ¡c2D*
1 1 ¡ c1

³
‰¶12c2 ‡ ¶13…c3 ¡ c1 ‡ 1† ¡ ¶23c2Š

± ²

¡ …1 ¡ c2†c2

D*
2

³
‰¡¶21…1 ¡ c2† ‡ ¶23…1 ¡ c2† ‡ ¶13…c3 ¡ c1†Š

‡ c2D*
3 1 ¡ c3

³
‰¶13…1 ¡ c3 ‡ c1† ‡ ¶32c2 ¡ ¶12c2Š

± ²
;

D22 ˆ c2c1

D*
1

³
‰¡¶12…1 ¡ c1† ‡ ¶13…1 ¡ c1† ‡ ¶23…c3 ¡ c2†Š

‡ …1 ¡ c2†D*
2 1 ¡

c2

³
‰¶21c1 ‡ ¶23…c3 ¡ c2 ‡ 1† ¡ ¶13c1Š

± ²

‡ c2D*
3 1 ¡ c3

³
‰¶31c1 ‡ ¶32…1 ¡ c3 ‡ c2† ¡ ¶21c1Š

± ²
:

Owing to the complexity of these expressions and in order to proceed further, sim-
pli®cations are required. As we are concerned with strong heteroatomic bonding
between species 1 and 2, ¶13 and ¶23 are neglected in comparison with ¶12 ˆ ¶,
that is j¶13j; j¶23j ½ j¶12j ˆ j¶j.

Furthermore, the following limiting cases concerning atomic mobilities are
studied.

3.1. Low atomic mobility of component 3
First, let us treat the case where the atomic mobilities of components 1 and 2 are

taken to be equal and much larger than that of component 3. D*
3 is neglected with

respect to D*
1 ˆ D*

2 ² D*, that is

D*
3 ½ D*

1 ˆ D*
2 ² D*:
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With these simpli®cations, equations (21) are reduced to

1

D*
D11 ˆ 1 ¡ c1 ¡ ¶

³
c1c2…2 ¡ c1 ¡ c2†;

1

D*
D12 ˆ ¡c1 ‡ ¶

³
c1‰…1 ¡ c1†2 ‡ c1c2Š; …22†

1

D*
D21 ˆ ¡c2 ‡ ¶

³
c2‰…1 ¡ c2†2 ‡ c1c2Š;

1

D*
D22 ˆ 1 ¡ c2 ¡ ¶

³
c1c2…2 ¡ c1 ¡ c2†:

The eigenvalues have the following form:

D…1†; D…2† ˆ D*

Á
1 ‡ c3

2
1 ¡ 2c1c2

¶

³

³ ´

§ 1 ‡ c3

2
1 ¡ 2c1c2

¶

³

³ ´2

¡ 4c3

…1 ‡ c3†2
1 ¡ 2c1c2

¶

³
¡ c1c2c3

¶

³

³ ´2
" #( )1=2!

:

(23)

Let us consider the particular case where c1 ˆ c2 ² c; c3 ˆ 1 ¡ 2c with 0 < c < 1
2
.

Diagonalization is provided by taking

âa ˆ
1 1

¡1 1

³ ´
:

The expressions for the diŒusivities of the independent modes become of the forms

D…1† ˆ D* 1 ¡ c
¶

³

³ ´
; …24 a†

D…2† ˆ D* 1 ¡ 2c ‡ c…1 ¡ 2c†2 ¶

³

³ ´
: …24 b†

The corresponding directions in the composition space are determined in the follow-
ing way: du2 ˆ 0 yields a¡1

21 dc1 ‡ a¡1
22 dc2 ˆ 0 and thus

dc2

dc1

ˆ ¡
a¡1

21

a¡1
22

ˆ
a21

a11

ˆ
D…1† ¡ D11

D12

ˆ ¡1;

dc2 ˆ ¡dc1;

…25†

du1 ˆ 0 gives a¡1
11 dc1 ‡ a¡1

12 dc2 ˆ 0 and thus

dc2

dc1

ˆ ¡ a¡1
11

a¡1
12

ˆ a22

a12

ˆ D21

D…2† ¡ D22

ˆ ‡1;

dc2 ˆ dc1:

…26†

From equation (25) the ®rst mode D…1† means `substitutional ¯uctuations’ (see
®gure 1), where the concentration of component 2 changes only to the extent of
component 1, leaving the concentration of component 3 undisturbed. It is seen from
equations (24 a) and (24 b) that, when ¶ < 0, the ®rst mode D…1† is faster (note that

2510 P. J. Desre and A. Gusak



D…2† < D…1† in the whole concentration range 0 < c < 1
2
). In fact, the high diŒusivities

of components 1 and 2 favour exchange between components 1 and 2, leaving the
concentration of species 3 unchanged. The absence of concentration gradient in c3

with the supposed low mobility of component 3 (D*
3 º 0) means that the mobile

components 1 and 2 are responsible for the faster substitutional mode. This latter
kinetic argument is consistent with equations (24 a) and (24 b) where D…1† is formally
greater than D…2† when ¶ > 0. Note that, the more negative ¶ is (the stronger 1±2
heteroatomic bonding), the faster is the diŒusion rate of the `substitutional mode’
and the faster is the relaxation of ¯uctuations towards equiatomic concentration.

The second mode, where the concentration of each pair of interacting compo-
nents 1±2 changes simultaneously (dc2 ˆ dc1† in the direction leaving the `stoichio-
metry’ constant is designated as a `clustering mode’ (see ®gure 1). In fact, the
occurrence of this clustering mode induces a signi®cant variation in the concentra-
tion c3 such that dc3 ˆ ¡2 dc1 but, owing to the small atomic mobility of component
3, the resulting relatively high gradient in c3 is unable to generate a signi®cant
relaxation ¯ux. Thus, it is understood from a physical point of view that the cluster-
ing mode is the slower. Again this is in complete agreement with equations (24)
provided that ¶ < 0. The more negative ¶ is, the greater is the ratio of the relaxation
time ½

…2†
slow of the slow mode (clustering mode) to the relaxation time ½

…1†
fast of the fast

mode (substitutional mode). This ratio is given by

½
…2†
slow

½
…1†
fast

ˆ D…1†

D…2† ˆ 1 ¡ c¶=³

1 ¡ 2c ‡ c…1 ¡ 2c†2¶=³
: …27†

The ratio ½
…2†
slow=½

…1†
fast, as a function of c, is represented in ®gure 2 for diŒerent values of

¶=³. The following features are found. For ¶=³ > ¡6:56; ½
…2†
slow=½

…1†
fast increases mono-
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Figure 2. Representation of the ratio ½slow=½fast versus concentration c1 ˆ c2 ˆ c for diŒerent
values of ¶=kT . Phase separation is obtained when ¶=kT < ¡8.



tonically with increasing concentration c. For ¶=³ < ¡6:56 there is a maximum

½
…2†
slow=½

…1†
fast at around c ˆ 1

4
. When ¶=³ ˆ …¶=³†critical ˆ ¡8, ½

…2†
slow=½

…1†
fast diverges

at c ˆ 1
4
…D…2† ˆ 0†. When ¶=³ < ¡8, there are two values of c, namely c1 and c2,

for which D…2† ˆ 0; c1 and c2 are such that

c ˆ 1 § …1 ‡ 8¶=³†1=2

4
: …28†

When c1 < c < c2 phase separation occurs in the liquid phase (D…2† < 0). The
critical temperature for phase separation is such Tc ˆ ¡¶=8R. (Note that the expres-
sion for Tc is quite diŒerent from that obtained for a binary liquid exhibiting a tendency
to phase separation (¶ > 0) which, for a strictly regular solution, is Tc ˆ ¶=2R.)

When c tends towards 1
2
, (i.e. to the binary liquid 1±2), D…2† tends towards zero;

this yields a diverging ratio ½
…2†
slow=½

…1†
fast at c ˆ 1

2
. As expected, when approaching this

limit, the substitutional mode D…1† becomes the only mode describing relaxation in
the binary system 1±2.

Furthermore, it can be checked that the determinant associated with the thermo-
dynamic matrix, namely

q2g

qc2
1

q2g

qc1 qc2

q2g

qc2 qc1

q2g

qc2
2

0

BBB@

1

CCCA

(g is the molar Gibbs energy of the liquid) is equal to zero at the same concentrations
as given by equation (28).

Consequently, the above-mentioned `substitutional’ and `clustering’ modes have
signi®cance not only from a kinetic viewpoint but also from a thermodynamic view-
point. It has been shown (Gusak and Zakharov 1979) that the transformation matrix
âa diagonalizing the diŒusion matrix diagonalizes the thermodynamic matrix as well:

âa¡1ĝgâa ˆ ĝg0 ˆ g…1† 0

0 g…2†

Á !

: …29†

Note that in the general case the matrix âa is not unitary, but in the present symmetric
case (c1 ˆ c2) it becomes

âa ˆ 1

21=2

1 1

¡1 1

³ ´
; âa¡1 ˆ 1

21=2

1 ¡1

1 1

³ ´
: …30†

In the present application the following expressions for g…1† and g…2† are obtained:

1

³
g…1† ˆ

2

c…1 ¡ 2c† ¡ 2
¶

³
;

1

³
g…2† ˆ 2

c…1 ¡ 2c†
‡ 2

¶

³
:

…31†

The probability of arbitrary homophase ¯uctuation in some region containing N
atoms is classically given by

P / exp ¡ N

2³

X2 X2

gik dci dck

Á !

;
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an expression which can be easily transformed into the following form:

P / exp ¡ N

2³
g…1†…u1†2

³ ´
exp ¡ N

2³
g…2†…u2†2

³ ´
: …32†

This means that the above-mentioned parameters u1 and u2 ¯uctuate independently
not only in the kinetic features but also in the thermodynamic features.

The mean-squared ¯uctuation is found to be larger for the `clustering mode’
when ¶ < 0; hu2

2i > hu2
1i with:

hu2
2i ˆ 2³

Ng…2† ˆ 1

N

1

1=c…1 ¡ 2c† ‡ ¶=³
;

hu2
1i ˆ 2³

Ng…1† ˆ 1

N

1

c…1 ¡ 2c† ¡ ¶=³
:

…33†

Note that, when ¶=³ < ¡8, the range covered by the `clustering mode’ tends to
in®nity for the concentrations given by equation (28).

It is noteworthy that the `clustering mode’, which has been found to be more
slowly relaxing, appears to be also more probable. This result means that strong
heteroatomic bonding in undercooled multicomponent liquids may favour the for-
mation of `long-lived concentration ¯uctuations’, which can be considered as de®n-
ing clustering eŒects in liquids where atomic cohesion is governed by metallic
bonding. The relatively great probability of formation of these clusters together
with their long lifetime act to enhance the HFM nucleation mechanism, particularly
when an expected nucleating compound has nearly the same composition as that of
the clusters.

It is notable that, in the case where ¶ > 0 (repulsing interaction between 1 and 2)
with the previous hypothesis concerning the atomic mobilities
(D*

3 ½ D*
1 ˆ D*

2 ˆ D*), the substitutional mode would become the slower. Such a
mode would classically lead to phase separation for large ¶=³. In this latter case,
phase separation would be initiated by homoatomic clustering.

3.2. High atomic mobility of component 3
It is also of interest to study the opposite limiting case, where the mobilities of

atoms 1 and 2 are negligibly small compared with that of atoms 3:
D*

3 ¾ D*
1 ˆ D*

2 ˆ D*.
In this case and keeping the condition of very strong heteroatomic bonding

between components 1 and 2 …j¶13j; j¶23j ½ j¶12j ˆ j¶j† it is found from equations
(21) that

D11 º cD*
3 1 ‡ c…1 ¡ 2c† ¶

³

³ ´
ˆ D12 ˆ D21 ˆ D22:

The expressions for the independent modes are

D…1† º D*
3 2c 1 ‡ …1 ¡ 2c† ¶

³

³ ´
; D…2† º 0:

Again the mode D…2† appears to be the slow mode, but in this case the physical
meanings of the modes change. With
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âa ˆ
1 ¡1

1 1

³ ´
and âa¡1 ˆ 1

2

1 ‡1

¡1 1

³ ´

it can be found that, for the ®rst mode, du2 ˆ 0, which leads to dc1 ˆ dc2 (the ®rst
mode corresponding to D…1† now means clustering instead of substitution) and, for
the second mode, du1 ˆ 0, which yields dc1 ˆ ¡dc2 (the second slow mode corre-
sponding to D…2† now means substitution). Thus, in the case of a highly mobile
`solvent’ (component 3) and low mobility of strongly interacting solutes 1 and 2
the clustering mode is short lived and the substitutional mode is long lived; this
situation is the opposite of that obtained with mobile species 1 and 2.

This last result appears to be reasonable as, for clustering ¯uctuations
…dc1 ˆ dc2 ² dc†, the concentration of the mobile component 3 changes to a max-
imal extent; dc3 ˆ ¡2dc, so that the resulting gradient rc3 is signi®cant; this eŒect
added to large D*

3 pulls the system back rather quickly (fast relaxation). On the
contrary for substitutional ¯uctuations (dc1 ˆ ¡dc2) the concentration of compo-
nent 3 remains undisturbed, dc3 ˆ 0. As rc3 ˆ 0, the resulting ¯ux is certainly very
small (this ¯ux is not rigorously equal to zero as the ¯ux depends formally on the
gradient of chemical potential); this leads to a long relaxation time owing to the low
mobilities of components 1 and 2.

} 4. Conclusion
This study has been mainly devoted to the analysis of the relaxation of concen-

tration ¯uctuations in ternary liquid alloys. Two normal modes of concentration
¯uctuations have been found to characterize the relaxation of ¯uctuations.
Application to speci®c cases allows us to obtain a clear physical meaning of the
eigenvalues corresponding to these modes. For example, when two components
exhibit a strong heteroatomic bonding together with high atomic nobilities, a slower
clustering mode is de®ned. It has also been found that the long-lived clustering
¯uctuations also have a maximum probability of being formed. This allows physical
de®nition of clustering in metallic liquids.

In a multicomponent liquid containing ¸ components, the relaxation of concen-
tration ¯uctuations is described by ¸ ¡ 1 normal modes. The particular strong
chemical order between some components can generate long-lived clustering ¯uctua-
tions whose relaxation is described by the corresponding normal mode. When the
compositions of clusters are close to the concentration of expected nucleating com-
pounds in the undercooled liquid, the HFM mechanism of nucleation is particularly
favoured. This allows us to understand why the bulk glass-forming ability from the
liquid state is particularly sensitive to the average composition of the alloy (Inoue et
al. 1990, Pecker and Johnson 1993, Busch et al. 1995).
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