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Two remarks on Wagner integrated diffusion coefficient  

Integrated interdiffusion coefficient, introduced by Carl Wagner in 1969, is 

revisited. First, it is applied for the whole diffusion zone, consisting of solid 

solutions and/or layers of intermediate compounds. We demonstrate, for the first 

time, that the Wagner coefficient satisfies the simple additive rule: the total 

squared inter-penetration width is proportional just to the sum of all Wagner 

coefficients of all intermediate phases of the system. Second, we check the 

applicability of Wagner coefficients in the atomitic-scale modeling of reactive 

diffusion. Checking is done for the growth of intermediate compound AB with 

BCC lattice. 

Keywords: diffusion; reaction; Wagner diffusion coefficient; parabolic 

Boltzmann-Matano substitution; Stochastic Kinetic Mean Field method. 

PACS: 64.60.De, 64.60.Ej, 66.30.Ny, 66.30.Pa, 68.35.bd, 81.30.Hd 

I. Introduction 

Joining of two materials by interdiffusion or by reactive diffusion is a complicated 

process involving diffusion, lattice flow, stress generation, and relaxation, chemical 

reactions etc. The main, integrated characteristic of joining is a mean depth of mutual 

penetration. Below we suggest the very simple measure of the joining magnitude and its 

interrelation with Wagner integrated diffusion coefficients. 

Integrated diffusion coefficient was introduced by Carl Wagner, and is commonly used 

to simplify the kinetic description of the intermediate phases with a narrow 

concentration range (compounds) growing in the diffusion zone [1-6]. Very often, the 

concentration range of growing compounds is so narrow that it is difficult to measure it, 

and even more difficult to measure the concentration gradient inside the compound 

layer. Formally speaking, one may encounter the mathematical uncertainty of the type 

“infinity multiplied by zero” in the formulation of the first Fick’s law for the 

interdiffusion flux density across the growing compound layer [7]: 
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( - atomic volume, BN - an atomic fraction of component B in the binary alloy, D - 

average interdiffusion coefficient). 

In the product D N  for the "line" (or "point") compound, the homogeneity range 

tends to zero, 0N   and average interdiffusivity tends to infinity,  
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due to thermodynamic factor 
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 ( g - Gibbs free energy per atom) tending 

to infinity at 0N   inversely proportionally to N .  Luckily, in most cases, we are 

not interested in the details of concentration dependence inside the intermediate phases, 

but instead, need just prediction of the growth kinetics. And this kinetics is determined 

by the Wagner integrated diffusion coefficient 
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Substituting eq. (2) into integral (3) one easily gets [5]: 
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Here  1, 1g k k k     is a thermodynamic driving force of reaction 1, 1k k k   ,

 N k is an average molar fraction of B in the k-th intermediate compound. Eq. (4) has 

the traditional structure of the product “mobility times driving force”. 

In the following Section 2 the Wagner coefficient is generalized over the total diffusion 

zone and related (by Matano-Boltzmann substitution) to the mean squared 



interpenetration depth. In Section 3 we modify the standard Matano analysis to get 

explicit expression for measuring the Wagner diffusivity within single phase. In section 

4 we check the applicability of Wagner coefficient to the mean-field atomistic-scale 

model of phase growth (SKMF-Stochastic Kinetic Mean Field). Namely, we model the 

reactive growth of B2 phase in the diffusion couple A-B with BCC lattice and account 

of two coordination shells. 

II. Integrated diffusion coefficient over the whole diffusion zone 

Let us consider the general case of the binary diffusion couple with the step-wise initial 

profile based on the Heaviside step function: 
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Here MX  is a coordinate of Matano plane (initial contact plane in the laboratory 

reference frame). Interdiffusion coefficient can be one continuous function of 

composition (full solubility) or several step functions with zero gaps between them 

(limited solubility and possibly the intermediate phases). It is a well-known trick to 

prescribe zero interdiffusivity to the two-phase regions. Indeed, any two mixtures of two 

neighboring phases in mutual equilibrium with different average compositions have the 

same chemical potential of any species in both phases and therefore, zero flux. Under 

such conditions one expect the concentration profile to be monotonic, and satisfy the 

parabolic Boltzmann-Matano substitution:  
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Now let us multiply both sides of eq. (6) by   and integrate over whole couple length 

(formally infinite) corresponding to initial concentration range  ,L RN N : 
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Elementary transformation of both sides gives: 
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Coming back to time and space parameters ,t X , one gets the following parabolic law 

for the squared width of whole diffusion zone: 
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where    ,
R

L

N

W L R

N

D N N D N dN   .- generalized Wagner diffusion coefficient over the 

total couple. In particular case of the couple A-B with n intermediate compounds and 

limited solutions of B in A ( ) and A in B (  ) one gets: 
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The just obtained new equations (9), (10) seem to be physically clear, but, to the best of 

our knowledge, they had not been published. These equations can be interpreted as a 

kind of “addition rule” or “superposition rule” for mean squared interdiffusion depth: 

the inputs of all intermediate phases into the mean squared interdiffusion depth are just 

added. In its turn, the mean squared interdiffusion depth seems to be the natural measure 

of joining between two materials. Of course, these conclusions are valid only for the 

diffusion-controlled, parabolic stage of inter- and reactive diffusion. 



III. Modification of Matano scheme for direct calculation of the Wagner 

diffusivity over single phase 

Let us consider the diffusion couple composed of two samples of the same intermediate 

phase but with compositions ,L RN N corresponding to the left and right margins of the 

homogeneity concentration range of this very phase. Interdiffusion in such couple leads 

to some concentration profile and to well-known Matano expression for the local 

diffusivity: 
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Now we integrate (11) over the concentration range and get the direct Matano 

expression for Wagner diffusivity: 
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For the array of atomic planes with mean-field concentrations C[i] it translates into 

following algorithm:  
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IV. Check by computer experiment: Comparison of two ways of evaluation of 

the Wagner coefficient for the growth of B2-phase layer in the diffusion couple. 

To illustrate and check the above-mentioned results, we will use atomistic Kinetic 

Mean-Field (KMF) method for the modeling of atomic migration and diffusion-

controlled phase transformations on the rigid lattice, suggested by George Martin [8], 



applied to strongly asymmetric thin-film couples in [9-11] and generalized to 3D in 

[12]. It was developed to include noise, for modeling nucleation and other processes 

related to overcoming the nucleation barriers [12-15]. The generalized version of KMF 

was called SKMF (Stochastic Kinetic Mean Field). This method seems to be most 

effective for the coarsened space and time scales, intermediate between 

phenomenological method (microns and larger scale) and Kinetic Monte Carlo (first of 

all, nano-scale). Contrary to Monte Carlo, SKMF cannot predict, say, the correlation 

factors for vacancy diffusion, but, on the other hand, it enables the atomistic description 

of reactive phase layer growth for tens of nanometers much easier and faster than by 

MC. We will see it just now. Let us consider the ordered B2 phase layer formation in 

the BCC diffusion couple A-B. In the mean-field approximation with rigid lattice, the 

ordering of B2 structure is a second-order phase transition. In such case the 

interdiffusion cannot provide the formation and growth of the ordered layer with almost 

constant composition (concentration plateau). On the other hand, typical technologically 

important examples of B2 phases, like NiAl, CoAl, FeAl, AuZn, CuZn etc. are the very 

distinct intermediate phases (compounds), separated from neighboring phases by quite 

measurable concentration gaps. To make the phase diagram of our model BCC-system 

more realistic, we use (everywhere below) the approximation of interactions in two 

coordination spheres (Z1=8, Z2=6). 

For simulation we chose the following parameters: Interaction energies: 

-21-10I I

AA BBV V J  , -21-3,9 10I

ABV J  , -21-8,76 10II II

AA BBV V J   , -21-2 10II

ABV J  , 

temperature 750 K 

  



IV.1. Phase diagram (equilibrium concentrations) construction by the diffusion 

couple method 

First of all, we use KMF-equations without noise [8, 12] for determining the 

equilibrium concentrations  
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Energies are calculated in the middle field approximation for the two coordination 

spheres: 
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attempts frequency, 
0E    saddle-point energy, taken in KMF  the same for all jumps).  

We construct diffusion couples A-AB and AB-B and simulate diffusion until full 

equilibrium meaning stationary concentration steps. 
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Figure 1. Typical initial (a) and final (b) concentration profiles in the couple A-AB, 

without noise. 

 

Boundary concentrations (mole fraction of species A) obtained by diffusion couples (A-

AB, AB-B) at the temperature 750 K, after averaging over each pair of atomic planes 

(100). are: 0.943, 0.585, 0.415, 0.057. 

IV.2. Phase growth in A-B-couple 

Introduction of interactions within the second coordination shell makes the ordering in 

stoichiometric AB alloy the first order transformation needing the overcoming of the 
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nucleation barrier. In principle, one can provide the nucleation by choosing initial 

condition with sufficient extra free energy. Yet, more natural is to provide the 

possibility of fluctuations. Therefore, everywhere below we introduce the noise of local 

fluxes between neighboring sites in the form of the noise of jump frequencies and use 

SKMF instead of KMF method, with the following main kinetic equations [13-15]: 
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dt – non-dimensional time-step, 0.01nA  . 

 

 

Figure 2. General picture of the АВ phase formation in the couple A-B. Color of each 

site corresponds to local probability (atomic fraction) of sort A at this site. 

  



 

  

a 

 

b 

 

Figure 3. Concentration profile along X-axis, obtained by averaging over Y and Z. 

(a) With additional averaging over each two planes, 

(b) Without averaging over each two planes (oscillations mean sublattices) 

We observe two layers of the ordered phase due to the periodic boundary condition for 

the thin-film system. 
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The squared thickness of the intermediate phase versus time, after some time averaging, 

corresponds to the parabolic law: 

 

Figure 4. Growth of the AB phase over time. 

 

As known from the diffusion textbooks [2, 5, 7], the kinetics of single IMC parabolic 

growth is described by the equation  
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IV.3 Finding of Wagner diffusivity from the computer experiment with diffusion 

couple within the homogeneity range of AB-phase 

Now we construct the diffusion couple 0.415-0.585 within the homogeneity range of 

AB-phase at 750 K. The typical profile after some time of annealing and averaging over 

each two atomic planes (100) is shown at Fig.5.  

 

Figure 5. Profile of the couple NL-NR within the homogeneity range. 

 

We calculate the Wagner interdiffusivity now from the interdiffusion in this limited 

diffusion couple, according to eq. (13). It gives 13 28.8 10 /WD m s  , which is rather 

close to eq.(20) obtained by alternative method (kinetics of reactive growth). 

 Summary 

Thus, the concept of Wagner integrated diffusion coefficient is generalized from the 

individual compounds to the whole diffusion zone of the arbitrary diffusion couple. This 

generalized concept is applied to broad solid solutions (eq.(9)) as well as to the 

sequence of compounds with a narrow homogeneity range (eq.(10)). Independently it 

can be calculated for each intermediate phase by the modified Matano equation (13). 

Results are checked within atomistic SKMF model 

0 10 20 30 40 50

i counts the atomic planes

0.4

0.44

0.48

0.52

0.56

0.6

NA



Acknowledgements. This work was supported by the Ministry of Education and Science 

of Ukraine, and by EXMONAN EU FP7 project (Ref. 612552). The author is grateful to 

Dept. MSE in NCTU (Taiwan) for hospitality. 

References 

[1] C. Wagner, Acta Metallurgica 17(2) (1969) p. 99. 

[2] F. J. J. Van Loo, Prog. Solid State Chem. 20(1) (1990) p. 47. 

[3] A. M. Gusak and M. V. Yarmolenko  Journal of applied physics (1993) 73(10) 

p. 4881. 

[4] F. J. J. Van Loo, M. R. Rijnders, K. J. Rönkä, J. H. Gülpen and A. A. Kodentsov, 

Solid State Ionics (1997) 95(1-2) p. 95. 

[5] A. M. Gusak, T. V. Zaporozhets, Y. O. Lyashenko, S. V. Kornienko, M. O. 

Pasichnyy and A. S. Shirinyan, Diffusion-controlled solid-state reactions: in alloys, 

thin-films, and nanosystems, John Wiley & Sons, New Jersey, 2010.  

[6] J. F. Li, P. A. Agyakwa and C. M. Johnson, Intermetallics 40 (2013) p. 50. 

[7] K. P. Gurov, B. A. Kartashkin and Yu E. Ugaste, Interdiffusion in multiphase 

metallic systems, Nauka, Moscow, 1981. 

[8] G. Martin, Physical review B 41(4) (1990) p. 2279. 

[9] Z. Erdélyi, M. Sladecek, L. M. Stadler, I. Zizak, G. A. Langer, M. Kis-Varga and 

B. Sepiol, Science 306(5703) (2004) p. 1913. 

[10] Z. Erdélyi, I. A. Szabó and D. L. Beke, Physical review letters 89(16) (2002) 

p. 165901. 

[11] D. L. Beke and Z. Erdélyi, Physical Review B 73(3) (2006) p. 035426. 

[12] N. V. Storozhuk, K. V. Sopiga and A. M. Gusak, Phil. Mag. 93(16) (2013) p. 1999. 

[13] Z. Erdélyi, M. Pasichnyy, V. Bezpalchuk, J. J. Tomán, B. Gajdics and 

A. M. Gusak, Computer Physics Communications 204 (2016) p. 31. 



[14] V. M. Bezpalchuk, R. Kozubski and A. M. Gusak Prog. Phys. Met. 18(3) (2017) 

p. 205. 

[15] V. M. Bezpalchuk, M. O. Pasichnyy and A. M. Gusak, Physics of Metals and 

Advanced Technologies 38 (2016) p. 1135. 

[16] Z. Erdélyi, D. L. Beke and A. Taranovskyy, Applied Physics Letters 92(13) (2008) 

p. 133110. 

 

 

 


