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1. INTRODUCTION

Solid�phase reactions that result in the formation
of an interlayer of intermetallic compound or other
intermediate phase with a narrow range of homogene�
ity are most often modeled in the configuration of a
plane diffusion pair A/B, a plane thin layer A/B, or a
multilayer film А/В/А…В/А/В. As early as in the
1970s, with the development of microelectronics, it
became urgent to predict the initial stages of such
solid�phase reactions. In works of Pines [1], Geguzin
[2], Gösele and Tu [3], Dybkov [4], etc., the existence
of the linear–parabolic law of growth of plane layers of
the intermediate phase was long ago established with�
out considering the phenomena of nucleation, grain�
boundary diffusion, and the exhaustion of one of the
components. The linear–parabolic growth is formally
described by an equation of the growth of the interme�
diate�phase thickness Δx

(1)

where  is the average interdiffusion coefficient inside
the phase interlayer; Δc is the equilibrium width of the
concentration range of homogeneity; and cα, cγ, and cβ
are the atomic fractions of atoms of sort B in the parent
α and γ phases and intermediate β phase. The param�
eter λ plays the role of the characteristic thickness of
the phase upon transition from the linear to the para�
bolic regime. At Δx  λ the rate of growth of the phase
proves to be constant (linear growth), whereas at Δx  λ
the rate of growth is inversely proportional to the
phase�interlayer thickness (parabolic growth).
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According to Pines, the presence of the linear regime
is caused by barriers at interphase boundaries (at one
or at both). It is for due account of the barrier that
Pines introduced the term “external diffusion” [1] in
order to distinguish transitions of atoms through
boundaries and ordinary diffusion (inside phases). In
the linear regime, the delay time of atoms at interphase
boundaries exceeds the time of migration of atoms
from one boundary to another through the phase
interlayer. Using the terminology of chemical kinetics
the flux density through the interphase boundary can
be written as

(2)

where K is the reaction�rate coefficient at the inter�
phase boundary (dimensionality m/s), c is the atomic
concentration (molar fraction of the component) near
the interphase boundary which in the general case var�
ies with time and differs from the equilibrium concen�
tration ceq at the boundary determined by the rule of
common tangent, and Ω is the atomic volume. Note
that, in all of the models we know, the deviation from
the equilibrium concentration is considered only from
the side of the intermediate phase. Meanwhile, the
deviation is present on both sides of the boundary (the
corresponding theory is suggested in [5, 6]). This
approach was conducted most rigorously in [3], in
which reaction rates on both interphase boundaries
were taken into account, then were used to analyze the
growth of two intermediate layers with formulation of
a criterion for the suppression and growth of phases. In
particular, it was shown that the characteristic length
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of a transition from the linear to the parabolic growth
in formula (1) is equal to

(3)

where

(4)

where Kij is the reaction�rate coefficient at the bound�
ary of phases i and j. In this case, the inverse quantity
can be called the resistance of the boundary. For this
reason, formula (4) is equivalent to the rule of series
connection of resistances.

In many real systems (powder mixtures, compos�
ites, nanostructures of the core–shell type) contact
between reagents is not a plane. In this work, we sug�
gest the extension of the above scheme to the case of
reaction diffusion in spherical nanosystems of the
α core– γ shell type (Fig. 1a). In this instance, even at
the initial stage of the reaction, the thickness of the
phase layer can be comparable with radii of the curva�
ture, and densities of diffusion flows at internal and
external boundaries of the layer will differ substan�
tially. Meanwhile, the equality of flux densities at the
both boundaries and inside the phase was the main
consequence of the quasi�stationary approximation
resulted in Eqs. (3) and (4). Therefore, it can be
expected that efficient reaction�rate coefficients can
be dependent not only on the material constants
(properties of the interphase boundary), but also on
the time�varying internal and external radii of the
interlayer rαβ and rβγ.

The transition from plane to spherical geometry of
the contact likewise can lead to other effects con�
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nected first with the stresses that arise in core–shell
structures. Recently, these effects were investigated in
detail in [7] and were well explained in [8]. In our
work, we focus on the role of finite reaction rates, tak�
ing the molar volumes of the phases to be equal.

2. FORMULATION OF THE MODEL

Let us assume that the process of interdiffusion
inside the phase is quasi�stationary; i.e., the total flow
of each of the components through all concentric
spherical surfaces is identical (naturally, it varies with
time):

(5)

Let us consider two models that differ in the behav�
ior of interdiffusion coefficients inside the phase. In
the first model, the interdiffusion coefficient inside the
phase is constant (D = const) and, in the second, the
interdiffusion coefficient depends strongly on the con�
centration inside a narrow range of homogeneity
(D = D(c)). Most often, the diffusion coefficient
exhibits a sharp minimum when the concentration is
stoichiometric. For this reason, when the concentra�
tion range inside the phase varies with time, the diffu�
sion coefficient averaged over this range will be incon�
stant. It is this change in the concentration range that
occurs in the case of delay of atoms at the interphase
boundary. In other words, immediately after the inter�
mediate phase was formed, the concentration in it is
more likely to be uniform everywhere and, as the phase
expands, the boundary concentrations tend to the
equilibrium values that are determined by the com�
mon�tangent rule. Correspondingly, the concentra�
tion range expands, tending to the equilibrium
(Fig. 1b).
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Fig. 1. (a) Growth of the intermediate β phase in the radially symmetric “α core–γ shell” binary system and (b) the corresponding
radial concentration profile without (dotted line) and with allowance for reaction rate at the interphase boundary.
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Model 1 (D = const)

Let us consider the growth in the β�phase spherical
interlayer in the α/core–γ shell system with interphase
αβ internal and βγ external boundaries in the form of
concentric spheres with radii rαβ and rβγ, respectively
(Fig. 1a). As in most of the previous works [1–4], the
concentration at boundaries on the side of the parent α
and γ phases will be taken to be almost equilibrium and
equal to concentrations of the following phases: cαβ ∼
cα and cγβ ~ cγ (Fig. 1b). However, actual concentra�
tions at internal (cβα) and external (cβγ) boundaries on
the side of the intermediate phase can differ signifi�

cantly from the corresponding equilibrium values 

and  of the intermediate phase.
From the condition of quasi�stability in this model

 = 0 and boundary conditions  = cβα

and  = cβγ it is easy to obtain a dependence of the

concentration on radius c(r) =  +

 the flux density through the β phase j =

, and the total diffusion flow

(6)

According to the condition of quasi�stability, the
same total flow should pass through the both inter�
phase boundaries as follows:

(7)

(8)

Equations (7) and (8) can be considered to be an
algebraic system of equations in unknowns cβα and cβγ.
Because in calculations deviations of concentrations
from the equilibrium values are more convenient to
operate, below, we use the change of variables

(9)

From (7) and (8), we obtain

(10)

where Δceq =  –  and the effective reaction�rate
coefficient at interphase boundaries (4) with allow�
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ance for the radial symmetry of the system will have
the form

(11)

It is easy to see that, in the case of plane diffusion pair
where radii of the curvature tend to infinity and are
almost equal to each other, the expression for Keff

transforms into the expression for  in formula (4)
used in [3].

Substituting (9) and (10) into Eq. (6), we obtain the
following equation of the total flow through the phase

(12)

To determine growth kinetics of the phase, we use
the equations of balance of flows at moving boundaries

whose general form is as follows  =  Tak�

ing into account the lack of flows in parent phases we
obtain

(13)

(14)

Model 2 (D = D(c))

Let the diffusion coefficient be dependent on the
concentration even at small deviations from the sto�
ichiometry. In this case, no simple hyperbolic depen�
dence of the concentration on the radius is obtained,
whereas the approximation of quasi�stability contin�
ues to work and in any concentric cross section of the
phase, according to the approximation, the flux den�
sity is inversely proportional to the square of radius
and the total flow is constant along the radius, which
allows one to make the following transformations:

(15)

Thus, as distinguished from formula (6) of Model 1,
in formula (15) the radial change in the diffusion coef�
ficient as a function of the concentration is taken into

account. The quantity  is the Wagner inte�
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 =  where  differs from  in

formula (1) by the fact that the concentration range
Δc = cβα – cβγ over which integration is carried out is
not equilibrium and varies with time.

In the first approximation the dependence D(c) can
be represented by the parabola

(16)

where cs is the stoichiometric composition of the
β phase. The average diffusion coefficient is obtained
via integration within the boundary concentrations as
follows:

(17)

After the substitution of the parabolic dependence (16)
into the expression (17) and integration, we obtain the
following expression for the average diffusion coeffi�
cient:

(18)

Equations (7) and (8) with allowance of (18) can be
considered as a system of algebraic equations in three

unknowns cβα, cβγ, and  As a result of simple and
rather cumbersome transformations, we can arrive at
the cubic equation for the average diffusion coefficient

 as a function of radii rαβ and rβγ as follows:

(19)

Expressions for constants of Eq. (19) are presented
in the appendix.

The cubic equation (19) can have three solutions,
although, as calculations have shown, there is only one

root that yields the continuous dependence of 
throughout the process of phase growth (in the model
for conjugating roots on intervals of solutions the heu�
ristic procedure was used). When physical constants
are specified correctly, Eq. (19) exhibits the only (real
and positive) solution.

3. RESULTS AND DISCUSSION

In order to analyze a possible influence of the con�
centration dependence of the diffusion coefficient on
the kinetics of phase growth, we solved Eqs. (13) and
(14) numerically with a constant diffusion coefficient
D (Model 1) or with the average diffusion coefficient

 determined from Eq. (19) (Model 2). These
models can be compared correctly if the diffusion
coefficient averaged over the equilibrium concentra�
tion range ( ) is equal to the diffusion coefficient D in
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Model 1. In this case, the shape of the concentration
dependence D(c) is determined by one of two interre�
lated parameters Dmin and p from expression (18) at

specified equilibrium concentrations  and 
Since it is evident that when Dmin tends to the average

diffusion coefficient  = D the curvature of the parab�
ola approaches zero (p → 0), Model 1 is the limiting
case of Model 2.

Upon initiation no nucleation stage was taken into
account, and the presence of finite reaction rate at
boundaries made it possible to formally start calcula�
tions from the zero thickness of the phase:  =

 = r0. The condition of stop of the calcula�
tions was the almost complete exhaustion of the core
material (rαβ < 10–10 m). The values chosen for the
parameters of simulation were as follows: r0 = 10–8 m,

 = 0.55;  = 0.45; D =  = 10–18 m2/s, Dmin = 2 ×

10–19 m2/s, Kβγ = 10–9 m/s, and Kαβ/Kβγ = 1. When
choosing the order of magnitude for the initial radius,
we proceeded from real experiments on the reaction
diffusion in nanoparticles [7, 8]. The concentration
range is characteristic of phases with the NiAl�type
structure B2. Diffusion coefficients are typical of
moderate temperatures of reactions. Orders of magni�
tude for reaction�rate coefficients are taken from [9].

The allowance for finite reaction rate introduces in a
natural manner the characteristic size λ (formula (3)).
The other parameter of the same dimensionality is the
initial core radius r0. For this reason, it can be expected
that the kinetics of reaction can be determined by the
dimensionless�ratio value λ/r0. In this case, λ can be
estimated using the coefficient K eff obtained at initial
radii.

Figure 2a displays a time dependence of reduced
(by division into initial particle radius r0) dimension�
less radii of internal ( = ) and external (  =

) boundaries of a new compound (an increase in
the external and a decrease in the internal radius of the
interlayer). When the system changes in size, the
kinetics of growth is self�simulating; i.e., when the
ratio λ/r0 is constant, the dependence  will be
the same for different initial particle radii r0 (Fig. 2b).

Growth in the reaction rate at one of interphase
boundaries results in the acceleration of the process of
phase formation, and this effect is more significant
when the rate changes at the internal boundary, as its
throughput capacity is additionally controlled by a
smaller area of the interface. At Kαβ  Kβγ, saturation
of the reaction zone occurs by the internal component
and the controlling role is passed on to the external
boundary.

Irrespective of the ratio of reaction rates at the
boundaries, a change in the width of the concentration
range of the phase Δc in the process of interlayer
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growth exhibits the general tendency; it first grows
beginning from zero and then again tends to zero. In
other words, the relative width of the concentration

range η =  first increases; then, as the core
material is exhausted (a reduction in the internal
radius), it again decreases to zero (Fig. 3a).

A simple analysis of formulas (9), (10), and (11)
discloses the character of changes in the boundary
concentrations in the process of phase growth and the
cause of the nonmonotonic behavior of the concentra�
tion�range width. At the initial time instant (when
internal and external radii are close to each other), the
concentrations at both boundaries are nearly coinci�
dent and are determined only by the relationship
between resistances of these boundaries as follows:

(20)

Depending on the ratio , concentrations
at the boundaries at the initial time instant can be
higher or lower than the stoichiometric values due to
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excess ( ) > 1) or shortage ( ) < 1) of
one of the components because of different through�
put capacity of the boundaries (Fig. 3b). In particular,
if the resistances of the boundaries are identical, the
initial concentrations are at the center of the range of
homogeneity (Fig. 3b, curve 2). The allowance for
nucleation stage can change this conclusion, because
the probability of nucleation depends, in particular,
on the concentration. However, if the growth con�
trolled by the reaction at the boundary comes after
nucleation, the system itself would set the concentra�
tion from formula (20).

As the phase grows, the range width Δc =  –
 –  increases. However, as distinguished from

the case of plane diffusion pair, concentrations them�
selves tend optionally to their equilibrium values,
which, as was already noted above, results in the non�
monotonic behavior of the concentration�range
width; i.e., enhancement is replaced by a drop to zero
(Fig. 3b). This behavior is explained by the depen�

(K K
αβ βγ

(K K
αβ βγ

eqcΔ
cβαδ cβγδ

1.0

0.5

8006004002000

ξ
ξβγ ξβγ

ξαβ
ξαβ

1

2

t, s

2

1

1.0

0.5

00.5
0

ξβγ

ξαβ

1.0

(a)

(b)

Fig. 2. Kinetics of changes in the dimensionless radii of
internal ξαβ and external ξβγ boundaries of the phase (a)
on the time t and (b) on the internal radius ξαβ. Calcula�
tions were conducted at the same λ/r0 for the two cases:
(1) D = 10–18 m2/s, r0 = 10–8 m and (2) D = 5 × 10–18 m2/s,
r0 = 5 × 10–8 m.

1.0

0.5

4002000 t, s

00.51.0

1

2

3

η

c

ceq
βγ

cβα

cs

ceq
βα

ξαβ

1

2

3

cβα

cβα cβγ

cβγ

cβγ3

2

1

(a)

(b)

Fig. 3. (a) Dependence of relative width η of concentra�
tion range on time t and (b) dependences of concentrations
cβα at internal and cβγ at external boundaries on the inter�
nal radius ξαβ for different relationships between reaction
rates at interphase boundaries when Kαβ changes:

(1)  = 0.1, (2)  = 1, and (3)  =
10. Model 1.

K K
αβ βγ

K K
αβ βγ

K K
αβ βγ



THE PHYSICS OF METALS AND METALLOGRAPHY  Vol. 115  No. 3  2014

GROWTH KINETICS OF NANOSHELLS OF THE INTERMEDIATE PHASE 273

dence of the effective reaction�rate coefficient (11) on
both radii. In particular, upon the exhaustion of the
initial core when the internal radius (and the internal
interface area) approaches zero, the effective reaction
rate likewise tends to zero. In this case, as follows from
formulas (10), the concentrations at both the internal
and external radii tend to the same equilibrium value
at the contact of the intermediate phase with the shell,

  →  + 0 =   →  –  =  Cor�
respondingly, the range width Δс = cβα – cβγ

approaches zero, and the concentration of the phase

becomes as low as possible and is almost equal to 

As a rule (as can seen from Fig. 4a), the effective
reaction rate falls off with time, whereas at a high reac�
tion rate, nonmonotonic behavior arises at the inter�
nal boundary. At the initial stage (when internal and
external radii differ slightly), a higher relative rate at
the internal boundary provides the active inflow of the
core material and rapid growth of the phase. As the
core material is exhausted, the total internal interface
area through which diffusion flow should pass is
reduced. For this reason, when the local throughput
capacity of the boundary Kαβ is invariable, its total
throughput capacity K eff begins to diminish (Fig. 4a).
This leads to the additional delay of atoms at the
boundary and, correspondingly, intensifies the non�
equilibrium state, increasing the deviation of the con�
centration from the equilibrium (and decreasing the
concentration range Δc → 0).

This means that, in terms of conduction and resis�
tances, when the internal radius approaches zero, the
effective resistance of the both boundaries 1/Keff

(as the quantity inverse to the conduction Keff) is

approximately equal to  and tends to infinity,

while the rate of this tendency is determined by
changes precisely in the internal boundary. It follows
from this that, depending on the magnitude of the
ratio between resistances of internal and external
boundaries, either monotonic or nonmonotonic
growth of the effective resistance with time can be
expected. More precisely, at  < 1, the effective
resistance will only increase, since the insufficient
conduction of the internal boundary at the initial stage
(Kαβ < Kβγ) will only enhance, since the internal inter�
face area diminishes. At  > 1, the excess con�
duction of the internal interface (Kαβ > Kβγ) can some�
times compensate for a large external interface area,
i.e., the effective resistance 1/Keff will have an extreme
that corresponds to the time instant of a transition to
the prevalence of the effectiveness of the external
boundary because of the advantage of the area.

The behavior of concentrations and effective reac�
tion rate at boundaries in Models 1 and 2 is qualita�
tively similar. However, the deviation of the concen�
tration from the stoichiometry at the initial time
instant of phase growth (when the diffusion coefficient
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in Model 2 depends on the concentration) is the cause
of a nonmonotonic behavior of its time average value

(Fig. 4b). In other words,  will not corre�
spond to the minimum of the concentration depen�
dence (16). In the process of extension of the concen�
tration range and coverage of the stoichiometric sec�

tion, the average diffusion coefficient  will drop
off. At the last stage, due to a shift in the concentration

range to one of equilibrium concentrations, 
again increases and becomes maximum. Thus, upon
the dissymmetry of the reaction rates at the bound�
aries, the average diffusion coefficient proves to be not
merely variable, but also changes in a nonmonotonic
manner (Fig. 4b, curves 1, 3). In the case of the sym�
metry of reaction rates (  = 1) at the initial
stage of growth, the system is in the section of stoichi�
ometric concentrations with the minimum diffusion
coefficient that, as the concentration range expands,

does not decrease, i.e., the function 
increases monotonically (Fig. 4b, curve 2). The
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achievement of the minimum value by the average dif�
fusion coefficient at the last stage of exhaustion of the
core, irrespective of the relationship of the parameters,
corresponds to the general principle of maximum lib�
eration of the Gibbs energy in nonequilibrium pro�
cesses.

Enhancement in the concentration dependence of
the diffusion coefficient is reached by decreasing Dmin

to zero or increasing p (provided that Dmin is positive in
all cases with the exception of spinodal decomposi�
tion), and the behavior of the average diffusion coeffi�

cient in the process of phase growth, , is
similar to dependence (2) in Fig. 4b and even becomes
sharper, while at the initial time of growth it tends to

zero. In contrast to this, when Dmin → , the concen�
tration dependence becomes insignificant, i.e.,

 degenerates into the straight line

 =  = D), and Model 1 transforms into
Model 2.

( )noneqD
αβ

ξ

D

( )noneqD
αβ

ξ

( )noneq(D
αβ

ξ D

Recall that, in this work, two assumptions are used.
One of them (concentration dependence of the diffu�
sion coefficient) determines the difference between
Models 1 and 2 and was analyzed in detail above. The
second assumption (allowance for finite reaction rate
at interphase boundaries) is taken into account in
terms of the effective reaction�rate coefficient at inter�
phase boundaries (11). With high reaction rates at both
boundaries Models 1 and 2 describe ordinary growth
of the intermediate pair without a delay of atoms at the
boundaries. In this case, the reaction zone is instanta�
neously saturated with the material and the concentra�
tion range expands to the equilibrium (Fig. 5b, curve 1)
with the result that the average diffusion coefficient
tends to the  value averaged over the equilibrium
range (Fig. 5a, curve 1). At the final stage of the phase
formation, a local minimum appears due to the effect
of a small throughput capacity of the internal interface
because of an abruptly diminishing area (analog of the
situation in Fig. 4b, curve 3). With low reaction rates at
both boundaries, growth in the phase is increasingly
controlled by delay of atoms at phase boundaries,
which not only slows down the process of phase for�
mation (Fig. 5a, curve 3), but also determines the nar�
rowness of the real concentration range of the phase
(Fig. 5b, curve 3).

The investigation of the law of phase growth
became the next logical step in our analysis. The time
dependence of the phase width Δx = rβγ – rαβ is
approximated with a good accuracy by the power
dependence Δx ∼ tm. In this case, at  = 1 when
the effective reaction�rate coefficient Keff increases,
the growth index m approaches asymptotically to 0.5
(parabolic growth controlled by diffusion) and when
Keff decreases, the index m tends to 1 (linear growth
controlled by boundary kinetics). When particles
increase in size, the tendency to the parabolic law
intensifies. An insignificant enhancement in m at the
initial stage of growth confirms the effect of reaction
rate at the boundary for a narrow phase and at the final
stage supports the effect of a small throughput capacity
of the internal boundary.

All the above considerations were obtained in the
assumption of the quasi�stability of the process. At the
last stage of exhaustion of the core, when the rate of
contraction of the internal boundary becomes very
high, the approximation of quasi�stability will cease to
hold because the concentration profile will have no
time to respond to rapid motion of the boundary. In
this case, however, the rate of changes in the phase vol�
ume is low (because at the last stage the internal radius
is very small) and, thus, a violence in the regime of
quasi�stability will only have time to influence the
parameters of the internal boundary rather than those
of the external boundary.

The practical value of the suggested model can be
considered to be the possibility to predict the complete
time (τ) of the reaction until one of the components is
exhausted. If the time law of phase growth is Δx ∼ tm,
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then the time τ for the interlayer thickness ΔX to be

formed should obey the law τ ∼  Because the
width of the phase is determined by the particle size,

ln(τ) ∼  For diffusion�controlled reactions,

this time is approximately quadratic in the initial core
radius (parabolic law of phase growth with m = 0.5),
whereas for reactions with boundary kinetics, the time
depends linearly on the radius (linear law with m = 1).

In order to take into account both approximations
of Model 2 (concentration�dependent diffusion coef�
ficient and effective rate at boundaries), we use the
dimensionless characteristics parameter λ/r0. Numer�
ical calculations show (Fig. 6a) that, at a fixed value of
λ, the dependence τ(r0) is linear at r0  λ (growth
index  → 1) and transforms into a quadratic
dependence at r0  λ (growth index  → 0.5).
It is natural that, for λ < 10–9 m, at all physically rea�
sonable initial core sizes, the process remains diffu�
sion�controlled (with the exception of last time
instants of the exhaustion of the core when the small
throughput capacity of the contracting internal
boundary again only controls the reaction at the inter�
nal interface for a short final period). On the other
hand, for λ > 10–3 m, in all physically reasonable cases,
the kinetics of the reaction will be controlled at the
boundaries (Fig. 6b).

The finite reaction rate can be especially important
at the interphase boundary between an IM compound
and a gas phase in view of the fact that at a low partial
pressure of the reagent supply of atoms onto the
boundary can be limited. The effect of partial pressure
on the phase growth in spherical and cylindrical hol�
low shells was taken into account in our recent work
[10] in which the driving force of the reaction at both
the stage of formation of oxide and the stage of its
reduction was taken to be time�independent. The gen�
eralization of growth kinetics with finite reaction rate
at the boundary suggested in this work can be applied
to the development of the approach proposed in [10].

If the diffusion coefficient depends strongly on the
concentration, then, because of changes in the con�
centration�range width, the effective diffusion coeffi�
cient changes; i.e., at the initial stage of growth of the
phase interlayer, it is lower than the average coefficient
in the equilibrium concentration range and is higher at
the final stage. In most cases, a monotonic increase is
observed. The nonmonotonic behavior is caused by a
difference between reaction rates at internal and exter�
nal interfaces and by a decrease in the throughput
capacity of the internal boundary in large systems and
at low diffusion coefficients.

Our results are obtained within the simplest para�
bolic approximation for diffusion coefficients. As a
matter of fact, the increase in diffusion coefficient
with a deviation from the stoichiometry is first directly
proportional to the concentration of the defects aris�
ing with this deviation (atoms in foreign sublattices,

1 .mXΔ

( )0
1 ln .r
m

�

[ ]0m r < λ

� [ ]0m r > λ

structure vacancies). The deviation from the stoichi�
ometry results in more intricate nonparabolic depen�
dences of the concentration of defects [11–13], the
consideration of which leads to mathematical difficul�
ties, although the qualitative result remains unaltered.

4. CONCLUSIONS

(1) The Pines–Geguzin–Gösele–Tu approach of
the allowance for finite reaction rates has been gener�
alized to the case of growth of the spherical phase
interlayer, and the effective reaction�rate coefficient
Keff proves to be dependent on the time�varying exter�
nal and internal radii with the result that Keff decreases
to zero, as the core is exhausted and the internal inter�
phase boundary is contracted.

(2) The strong concentration dependence of the
diffusion coefficient in the intermediate phase in com�
bination with the limited reaction rate at boundaries
can change substantially the concentration range of
the phase and, correspondingly, alter the actual diffu�
sion coefficient in the process of growth.

(3) Following growth in the plane layer of the
phase, if its concentration range increases monotoni�
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Fig. 6. (a) Dependences of time τ on initial particle radius
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control and  = 0.5 for the case of diffusion con�
trol and (b) dependences of index m on characteristic
size λ. Model 1.
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cally to the equilibrium and boundary concentrations
tend to equilibrium values, in the case of growth of a
layer in the core–shell system, the concentration

range behaves in a nonmonotonic manner beginning
to approach zero as the core is exhausted.

(4) The dependence of the time of the exhaustion
of the core on the size proves to be linear for fairly
small sizes and quadratic for fairly large sizes.
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APPENDIX

Let us derive expressions for constants of the cubic
equation (19). We substitute expressions characteristic
of concentrations at interphase boundaries into the

equation for average diffusion coefficient  =

Dmin + 

as follows:

 

As a result, we obtain the following equation:

where M, N, and L are determined as

 

Solving this equation for  we obtain the cubic

equation in the general form  +  +

 + d = 0, the constants of which are deter�

mined as a = 1, b =  –  – L,

c = KeffΔx(KeffΔx – ΔceqN –⎯ 2L), and d = 
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