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The problem of initial stages of reactive diffusion is treated. The phase
growth/suppression criteria due to diffusion interaction are analyzed. Some methods of
incubation time calculation are proposed. The role of metastable phases at the initial stage is
analyzed.

Po3sznsadaembcs npobriema nodyamkosux cmadil peakuitiHoi dugbyasii. AHaniaytomscsi
Kpumepii pocmy ma rnpuaHidyeHHs1 ¢ha3 eHacridok OugysitiHoi e3aemoOlil. pornoHyromscs
criocobu obyucneHHs iHKybauiliHux nepiodie. AHanizyembcsl ponb MemacmabinbHUX a3 Ha
rnoyamkosit cmadii.

Paccmampueaemcsi npobrniema HayvasbHbiX cmadul peakyuoHHoU Oughbgby3uu.
AHanusupyromcss Kpumepuu pocma u ysHemeHusi ¢ha3 ecrnedcmeue Oughghy3UOHHO20
e3aumooleticmeus. [lpednazaromcs cnocobbl pacdema UHKybayUOHHbIX  nepuodos.
AHanusupyemcs posib MemacmaburbHbIX ¢ha3 Ha HavasrbHoU cmaduu.

Keywords: diffusion, reaction, nucleation, phase competition, incubation time,
growth/suppression criterion.

Introduction

Reactive diffusion is the diffusion-controlled growth of intermediate phase layers
between two reacting materials proceeding due to interdiffusion through the growing
reaction products. Studies of reactive diffusion started in 1920s when the parabolic
law of layer growth was discovered by Tammann. Evans found the possibility of
mixed linear-parabolic regime. Wagner, Frenkel and Sergeev suggested the
derivations of parabolic law. After World War |l the late stages of reactive diffusion
were investigated by Pines, Kidson, Geguzin, van Bastin, van Loo, Gurov, Ugaste.

Starting from 1980s the main interest of diffusion community steadily shifts from
the problems of interdiffusion in solid solutions to the diffusive phase growth during
interdiffusion (reactive diffusion) in the systems with limited solubility and the whole
range of intermediate phases. In this review we treat the history of some ideas which
appeared in the early 1980s and became a basis of new approach to the synergy of
diffusion and reactions [1-32]. This review is not by far the complete story about
reactive diffusion. It reflects authors’ personal view and is based on the traditions of
the diffusion schools of the former Soviet Union. After 1990, when our group and
simultaneously the group of Pierre Desre and Fiqgiri Hodaj started to modify the
nucleation theory for the case of initial stages of reactive diffusion at nanoscale,
much more intereting results have been obtained [7,33-43]. In this review we will
almost omit these developments (which include rather intensive mathematical
analysis) and concentrate over rather naive but physically clear ideas about
interrelation between diffusion, reactions and nucleation.
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1. Standard model and anomaly problem. Reactive diffusion (formation and
growth of intermediate phase layers in the diffusion zone as a result of interdiffusion
of components through these layers) is a typical example of solid state reaction. It is
notable for its reaction product - a crystal (generally, a polycrystal) of an intermediate
phase rather than individual molecules (as in gas phase reactions) appears. The
crystal remains at the site of the reaction and becomes a barrier to its further
passing. For the reaction to proceed (when it is thermodynamically favorable) atoms
have to diffuse through new-formed phase layers and react at one of the new-formed
interfaces. The thicker the layers are the more time it takes to diffuse. And, therefore,
the reaction goes more slowly. Thus, even at sufficient amount of reagents the phase
growth rate decreases with time. It has become known since 1920s that in most
cases the phase layer growth obeys parabolic law. We briefly review the standard
model for the phase growth kinetics [1, 2].

First, consider the case of phase 1 growing within narrow concentration range
Ac=c, —c, <<1 at the process of annealing of a sample couple containing almost

mutually insoluble materials A, B (let A component be on the left, and B component
on the right). Thus, we’ll neglect interdiffusion fluxes in the initial components of
diffusion couple. Thereby, we consider all A atoms, which “managed to diffuse” to the
1/B boundary, to react with B atoms and not to go further, growing the phase “on the
right”. In the same way, B atoms, which “managed to diffuse” to the A/1 boundary,
react with A and grow the phase “on the left”. Let's neglect the molar volume
changes at intermetallic formation, as, thus, right away disregard those effects that
are connected with stresses, arising at phase boundaries. Besides, we’ll consider the
condition of diffusion flux steadiness to be fulfilled over the phase thickness. In other
words, the distribution of components in the phase layer is quasi-stationary. One can
prove this assumption [46], but it would be easier to get it in unsophisticated way.
Indeed, since homogeneity interval of the intermediate phase is narrow (too large
deviations from stoichiometric composition are energetically unfavorable),
concentration “has no way out” and it keeps itself almost constant (close to
stoichiometry) over the whole phase layer. That's why the time derivative of
concentration is small, and so the flux divergence is close to zero. In one-
dimensional case (diffusion couple) the divergence is simply equal to derivative over
diffusion coordinate. The derivative’s being equal to zero denotes that the flux density
almost doesn’t change over the whole phase layer. This means that the product of
interdiffusion coefficient and concentration gradient is nearly equal everywhere inside
the phase. Still, this doesn’t imply that concentration gradient is equal everywhere, as
interdiffusion coefficient may considerably change even at little deviations from
stoichiometry (especially in phases of B2 - type, for example, NiAl). Hence, it's
generally incorrect to simply say (as it's typically said and written) that concentration
profile inside the phase is linear. Let's make elementary transformations. If a certain
value is constant, it can be taken both inside and outside the integral sign. We'll take
it inside the integral sign:

de ifﬁg dx
QJ= —5@ ~ constzf)% Z == - =
Idx Idx Tr T
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~

(1.1)

BicHuk Yepkacbkoeo HauioHanbHoe20 yHisepcumemy. 2008. Bunyck 141 53
Cepis ,Disuko-mamemamuyHi Hayku”
http.://bulletin.cdu.edu.ua



A.M. Gusak, A.O. Vasylevska

The value ff)dc is called Wagner’s integral coefficient and is often written in the

following way:

Iﬁdc =D/Ac, (1.2)

T Ddc

Ac,

We emphasize once more that, as a rule, the kinetics of solid state reactions
isn't determined by the diffusion coefficient and the homogeneity zone width
separately but always by their product (i.e. the integral coefficient). And this is good
comparison with experiment, for the homogeneity zone width in many phases is so
narrow that it seems almost impossible to measure it experimentally. Wagner's
integral coefficient can be transformed using Darken’s relation, expressing
interdiffusion coefficient in a binary system with tracer diffusion coefficients and the
second derivative of Gibbs potential (per one atom) g with respect to concentration:

c(l-c¢) 82_g
kT  oc’

Having substituted this expression into Wagner's integral coefficient,
considering the narrow phase homogeneity range, one gets:

[Bleyde - E*M(é—g\l,s —5—9\A,1j -

where D, = — effective diffusion coefficient averaged over the phase.

D=(cD +(1-c)D}) (1.3)

kT oc oc
(1.4)

kT l-¢, ¢ -0 : kT
Here D, is diffusion coefficient of marked atoms averaged over the phase

-D- cl(l_cl)[gs -9, g —QAJZE* Ag,(A+B 1)

D =c¢,D, +(1-c,)Dg, Ag,(A B — 1) is thermodynamic driving force (per one atom)
of phase 1 formation (from A and B).

Thus, the growth rate of the single intermediate phase is determined by the
mobility of atoms in it (tracer diffusivities) and by Gibbs energy of phase formation.
As we can see, the “elusive” homogeneity interval itself is of little importance for us.

In such a way, the product of the density of B flux through phase layer and
atomic volume (that is, “the flux density of the volume transferred by B atoms”)
equals to

_[5dc
aJ, =& __Dac (1.5)
AX, AX,

As is well known, the rate of interface movement is equal to the ratio of the
fluxes step at this boundary to the concentration step. We regard the fluxes in
marginal phases of the diffusion couple to be zero (negligible solubility). So the fluxes
balance conditions at interfaces bring to the following two differential equations:
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C4 (1—cR)de :%
at AX,

dx, = DAc,
ot AX,

From these equations one can easily derive
the differential equation for the phase thickness

(1.6)

> AXx(1):
X XR X dAx a
—_— =, 1.7
dt  Ax(t) (1.7)
Fig. 1.1. Concentration profile at where
one phase growing between
insoluble components. 1— Ac D Ac
a= It S | Cl ~ 1—1. (1 8)
(1-cp)e, ¢ (l-¢)

And this gives the well-known parabolic law of phase growth
(AX)" = (Ax, ) + 2280 4
C (1 - C1)
If the thickness of the layer considerably exceeds the initial thickness (the latter
is taken right after the nucleation and lateral growth with formation of primary

continuous layer), then
Ax~ | 2P, (1.10)
Cl(l _Cl)

Now, let’s treat the case of two phases, 1 and 2, growing between two mutually
insoluble metals. Here we again make the assumption of constant fluxes over the
thickness of each phase (steady-state approximation):

(1.9)

@ = Diha gye _ PAG g 4y
Axl A'XZ
Ca Equations of particle number balance at
interfaces have the following form:
(1—c(2))dX2R _ D,Ac,
R - ’
at AX,
(C(Z)_C(l))dXZL :_DZACZ +D1AC1 (112)
EOTRT dt Ax,  Ax, ’
(e ~0) ax,, _ _DAc, _
X1R=X2L  Xor X : - i A% -
I's quite easy to obtain the system of

differential equations for phase thicknesses from
Fig.1.2. Concentration profile at  Eqs. (1.12):

two phases growing between dAX, D,Ac, D,Ac,

insoluble components.

dt " Ax, 7 Ax, (1.13)
dAX, D,Ac, D,Ac,
=4, +a,,
dt AX, AX,
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Here

ay = (1.14)

1-c®
It's easy to make sure that the equation system (1.13) has parabolic solutions
as well, Ax, =kt"?,Ax, =k,t">, however, expressions for parabolic growth
constants k,, k, are not so “elegant” as in the Eq. (1.10) for the growth of one phase.

Basic equations for any number of phase layers, growing simultaneously, are
obtained in the same way. However, the mentioned simultaneity presents some
problems that have become crucial since 1970-1980s with technological
development of integrated chips manufacture and maintenance.

Standard model is quite sufficient to describe the late stages of reactive
diffusion in standard “infinite” diffusion couple (with size much larger than the width
of diffusion zone). Yet, since 1970s, the main field of reactive diffusion applications
shifted to microelectronics, which uses reactions in thin films. Researchers
immediately found that in this case standard model does not work, demonstrating
various “anomalies” (sequential phase growth, deviations from parabolic law etc.)
Such problems lead to reconsideration of standard model. It was made almost
simultaneously by Gurov and Gusak [3], Gdsele and Tu [4], V. Dybkov [5].

According to [5, 6], diffusion theory proves to have such a principle drawback,
so that it doesn’t explain (a) disagreements between the observed phase
composition in the diffusion zone and that of the phase diagram; (b) breaking of a
parabolic law for phase layer growth. Obviously, the author of [5, 6] might not have
paid attention to the works [3, 4], which provide appropriate explanation for the facts
mentioned above. And, to our mind, a number of the author’s [5, 6] statements and
predictions, appear to be disputable or simply incorrect.

In [5, 6] the diffusion theory is blamed for poor regard to “chemical phenomena”
in the “chemical process”. Here the reactions at layers boundaries are meant. If so,
the problem must be specified. Reactions in the diffusion zone at formation and
growth of phase layers, can be divided into two types:

reactions of the first type — formation of new phase nuclei in the contact zone as
a result of heterophase fluctuations at chemical potential and concentration
gradients;

reactions of the second type — those being “reactions” at the moving boundary
of already existing phases, comprising of three successive steps: detachment of
atoms from a lattice of a phase (l), transition through the interface (IlI), and
attachment to the lattice of another phase (lll).

Those are the reactions of the second type that are often meant, explicitly or
implicitly, when “finite reaction rate” or “boundary kinetics” [4, 5, 6, 8-11] are taken
into account. It makes sense to treat their influence on the process kinetics only in
case of the “reaction” stage being limiting, i.e. characteristic time of detachment,
transition and attachment of atoms is more or at least commensurate to that of
diffusion delivery of both sorts of atoms at the interface.

2
Interface transition time is 7, ~ D_ where h~5-10""" m. Attachment time 7, at
B

the worst, is reduced to time required for searching the “appropriate place” (grain-
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dZ
D_’ d being equal to several atomic distances.

B

Detachment time, obviously, is close to 7, by the order of magnitude. Characteristic
time of transfer through the layer

boundary dislocation, etc.):

Z' AX _ Ax Ax?
df =", DAc  DAc

AX

(D - effective interdiffusion coefficient in the layer). Boundary kinetics appears to
be limiting in case of r1+27>1yy, i.e. at

AX < (B +4d° )“2(%

)1/2.
B

According to the relation (1.4), DAc = D* 2—79_ where D* is a combination of self-

diffusion coefficients of the components in the phase. If there is no oxide film or other
barrier layer at the interface, then, as it is known, D*/DB <<1. So, (taking into

account that h and d make a few atomic distances) the thickness of the phase layer
Ax*, at which the change from boundary kinetics to diffusion regime takes place,
doesn’t exceed the interatomic distance.

Apparently, the situation must radically change when treating the reaction
between a solid body and a gas. In this case the boundary kinetics regime (and linear
phase growth) can be reached by reducing the reagent’s partial pressure in the gas
medium which leads to atoms come at the surface.

In the contact zone of solid bodies the boundary kinetics, connected with
reactions of the second type, can be expected only in the presence of oxide films or
other barrier layers at the interface. We developed alternative idea for the long stage
of linear growth [44,45]. It presents a certain interest, for it regards the limited power
of interfaces as sinks/sources of vacancies, and corresponding contribution of non-
equilibrium vacancies.

In other cases the regime of phase layer growth is a diffusion controlled one
from the very beginning, if the beginning implies the already formed layer of new
phase nuclei able to diffusion growth. So far, we use the model which assumes that
critical nuclei of all phases, allowed by the phase diagram, appear at once (the
unlimited nucleation model). It is known that the growth of a new phase from the
nucleus is energetically favorable only in case of nucleus size exceeding some
critical value I, determined from extremal condition of Gibbs thermodynamic
potential. In a one-component substance the extremality is expressed simply by the

0G
derivative of G with respect to the nucleus size being equal to zero: —| =0. At

OR|,
nucleation in the binary system there are some problems concerning the difference
between the composition of a nucleus and that of initial “parent” phases, occurring in
general case [12]. Thus, the notions of the smallest (equilibrium), most probable and
critical nuclei do not coincide. This matter is treated in more details below. For the
present, the actual existence of the critical nucleus size is important for us, this
critical size becoming unstable against decomposition at 7</,.
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We assume that at the initial period, successive layers of critical nuclei of all
phases, allowed by phase diagram, appear as a result of heterophase fluctuations. It
is significant that the nuclei arise in the chemical potential gradient field, so that finite
differences Au over the thickness of each layer exist from the very beginning.
Chemical potential gradients inside the nuclei cause diffusion fluxes through them.
Owing to the difference in diffusivities, flux densities vary for different phases. The
jumps of diffusion fluxes at interfaces make the boundaries move: if phase 1 provides
more A atoms to the interface 1-2 than phase 2 takes, the interface will shift — phase
1 will grow at the expense of phase 2. At that nuclei layers come into diffusion
interaction. The result of the interaction varies for different phases and depends on
diffusion characteristics of all phases in phase diagram. Those phases, for which
—DAc

AX

, start growing and reach the observed phase layers. The nuclei of those

phases, for which ? , reduce, become subcritical and decay. The new ones
IL‘Y

arise at their place, and they suffer the same fate: they become exhausted and

consumed by fast-growing neighbouring phases (“vampires”).

The growth of such phases is suppressed, they exist in the contact zone only
“virtually”, in the form of nuclei that appear and decay straight away. This explains
the disagreement between the phase composition of the zone and phase diagram.
Criteria of suppression and growth for the simplest cases will be obtained in the next
section.

Yet, the phase suppression, as it will be shown in 1.3, lasts for the finite period
of time (though it may be quite a long one). When growing phases amount to a

certain thickness and the fluxes through them are reduced sufficiently, the

value ? for the previously suppressed phase gets positive, so that it starts
1,

growing as well. It is confirmed by the experiment [2]. The time of nuclei suppression

actually presents the incubation time of a phase (if not taking into account the time of

nuclei formation). Examples of calculations are given in 1.3.

Thus, our model shows that, at external influences being absent in non-limited
diffusion couple, all phases allowed by phase diagram must eventually grow (this
doesn’t concern thin films). In [5, 6] it is stated that every time quite a small fraction of
all phases, allowed by phase diagram, grows. This conclusion in incorrect. In fact,
during traditional investigation periods, involved in experiments, not all phases arise.
And our model provides explanation for this. But if the periods are very long other
phases must also appear. As mentioned, it was experimentally proved [2], for the
phase that had been absent, arose in the zone only after annealing for hundreds of
hours.

When the previously suppressed phase starts growing, its own “building
process” requires some material that in other case would be used for the extension of
other layers. This means that in the moment the suppressed phases start their
growing, the growth kinetics of other phases acquires some peculiarities. The latter
are briefly analyzed in [3].

The above-described situation seems to be logically clear. However, nature is
not obliged to keep to our logic. It may be quite a real case, at which for some
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reasons the nuclei formation in some phases rather than phase growth from the
nuclei is opposed; while the emergence of nuclei in metastable phases may appear
to be easy, and these nuclei may start growing and suppressing the nuclei of “legal’
stable phases, which had appeared subsequently. The conditions for formation of
these stable phases’ nuclei depend on the type of neighbouring phases and therefore
are considered the “parent” ones. Eventually, the solid phase chemical interaction
becomes highly complicated and turns to be strongly dependent on random factors
arising at the initial stage of the contact.

2. Criteria of phase growth/suppression (approximation of unlimited
nucleation). Let's treat the initial stage of phase formation at annealing of the
diffusion couple A-B, regarding the phase diagram to include two intermediate
phases 1 (¢4, c1+A4cy) and 2 (c,, co+Acy), and neglecting the solubilities of A in B and
B in A. The concentration profile can be depicted from Fig. 1.2 (see previous).

Then the equations of diffusion interaction between phases are of the following
form:

(c, _O)dxA1 _ D,Ac,
at AX,
dx,, _ D/Ac, D,Ac,
dt AX, AX,
dx,; D,Ac,

1-¢ =
(=) at AX,

According to the accepted model, the layers of critical nuclei of both phases
appear in the contact zone at the very initial stage. From Eq. (2.1), the expressions
for phase thicknesses Ax;=Ax1, — Axy, Axo= Axog — Axy, follow:

dAx, 1 ¢, DAc, D,Ac,
dt c¢,—-c/\c Ax AX,
dAx, _ 1 ( DAc, N 1-c, D,Ac,
dt  c,-¢ | Ax, 1-c¢, Ax, |

Simple analysis of equalities (2.2) shows that the phase behaviour is

determined by the value of dimensionless parameter

(c,-¢) (2.1)

(2.2)

_ DAc, 1Y
D,Ac,l)
1. At r<t we get: dax,| <0, dax, | >0, that is phase layer 2 grows
c, dt |, dt |,

from the very beginning, suppressing the growth of phase 1 nuclei (phase 2 is a
“‘vampire”)

2. At Siorc 1= we get: Ay >0, dAx, >0, i.e. both phase layers
C, l1-c, dt |, ar |,
grow from the beginning.
3. At r> 1= we obtain: gAx, >0, gAx, <0, that is phase layer 1
l-c, dt |, dt |,

grows from the beginning, suppressing the growth of phase 2 nuclei (phase 1 is a
“vampire”)
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Thus, the criterion for the suppression and growth of phases at the initial stage
for the system A-1-2-B is obtained; it is convenient to represent it on the diagram
(see Fig. 2.1).

The numbers denote those phases
that grow from the very beginning. 2 1,2 1
Similarly, we can find the criteria for the
suppression and growth in case of three
intermediate phases between mutually
insoluble A and B.

< 1-¢, D.Ac, I1?

c, l-c, D,Ac, ")
Fig. 2.1. Suppression and growth criteria

for two intermediate phases.

q;
q_1 A
3—(2,3)
C3 _C1
C, —Cy l
1,3—(1,2,3
23 ( )
e, 1,2,3
1-c¢, N -7
(2,3) (1,2,3:)/, 1—(1,2)
1 -,
1,2
L7 (1,2,3) ’ :
e 1 l
L < >
¢ C3 —Cy ﬂ
cq c7 —C,’ a'v

Fig. 2.2. Suppression and growth criteria: case of three intermediate phases.

The corresponding graphical representation of the criterion is given on Fig. 2.2.
The arrows indicate the sequence of phase composition change in the diffusion zone.

3. Incubation time

As it was told in the first paragraph, phase suppression cannot be everlasting.
Let's again view system B for the case of > (1-¢,)/(1-¢,), when at the initial point
of time the nuclei of phase 2 are “exhausted” by the growing phase 1. One can easily
check that the growth of the single phase 1 between insoluble A and B takes place
according to the following law:
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12
AX, :(M] Y2 (3.1)
C1(1_01)

At that critical nuclei of the phase 2 are constantly arising at the boundary of the
growing phase 1 and B. Taking (2.2) into account the rate dAx, /dt for these nuclei is
determined by the equality:

dax,| 1 (_ Dc,  1-¢, DZACZJ
at |, c,-c A l-c, I )
As the thickness Ax; increases, such a moment comes when the value

(3.2)

di(z passes through zero and becomes positive, i.e. phase 2 will no longer be
ICf
suppressed. This will occur at:
Ax, = 1202 DA o) (3.3)
1-¢, D,Ac,
that is, according to (3.1), the time point for this is:
c,(1-c,)” D,Ac )
, = l( 2) 1 1 (‘(j)) (34)

2(1-¢,) (D,Ac,)’
It is quite natural for the time 1, of phase 2 suppression to be referred to as
incubation time, if disregard the time of first critical nuclei formation.
If D/AC; at least approximately fit the Arrhenius dependence ((exp(—Q/kT), for
more details see [1]), then:
2Q, -Q
kT
one may expect Q,>Q,/2, so that incubation time must reduce with

temperature growth. If, by chance, Q, <Q,/2, it should mean that the barriers for

atom jumps in phase 2 are much lower than those in phase1, so at commensurate
pre-exponential factors one may expect the diffusivity of phase 2 to be much higher
than that of phase1, D,AC,>> D;AC4, and phase 2 will appear to be not the
suppressed phase but the suppressive one (a “vampire”), the growth of phase 1 will
be opposed and its incubation time will reduce with the growth of T. Let’s specify the
calculation of the critical nucleus value. Consider the formation of phase1 nucleus at
the plane interface a and B. The formation involves Gibbs bulk energy gain:

n(ga _g1)Va +n(gﬁ _gl)vﬁ
and surface energy loss ¢,,5,, +GlﬂSlﬁ - GaﬁSa/? connected with the change of a-
contact to two contacts a-1 and 1-B (0q1, O1g, Ogg — interface tension coefficients).
From considerations of symmetry (disregarding anisotropy of phase lattices) the
basis of the nucleus can be treated as a circle of a certain radius R (Sq=TIR?).

Similarly to the nucleus at the boundary of two identical grains (see [13]) it's quite
easy to find boundary angles and dependences of AG on R:

(Giﬂ +U§1 _0125)

exp (3.5)

cos 9, = , (3.6)
20‘aﬂ o,
2 2 2
c,+0,—0
cos 9, =( o ¥ 1y ~Om) , (3.7)
20,0,
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3 —
AG =& n(ga 8 —cosd, |+
3 sing, (1+cosd,
+ n(gﬂ ~8) 2 —cos g, |+ (3.8)
sin g, 1+cos 9, '

2
+ 7R* 204 Il T,
l+cosd, 1+cosd,

The composition and components’ chemical potentials of the appeared nucleus
vary over X, which has radical influence on its fate. Thus, in the strict sense, while
calculating AG one should take integrals of jn(ga —g,)dV type instead of n(gqs-g1)Va.
This was realized in [7, 33-40]. Now we consider C gradient to be small and function
g(C) to vary insignificantly inside the nucleus, such that g implies minimum of Gibbs
potential (per one atom) for phase 1 (and gq, gg — Gibbs potentials of pure A and B).

From thermodynamic viewpoint, the nucleus is able to growth at R>R., G(R)
monotone decreasing with R increase. Though, it doesn’t mean that neighbouring
phases, also able to growth, will give it such an opportunity. Investigating extremal
properties of the function (3.8), one can achieve:

20, n 20_1/7

l1+cosd, 1+cosd,
=2 (3.9)

"9.~9) 2 _cosg +n(gﬂ—gl) 2 _cosd
sing, |1+coséd, “ sing, |1+cosy, ’

Transversal size of the critical nucleus:

l1-cos$ 1-cosd
l, =R, | ——%-———"-~ (3.10)
sing, sing,

— O-aﬂ

4. Should we rely upon the ingenuity of nature? Nucleation problems.
Metaquasi-equilibrium conception. Until now we’ve been considering nature to be
resourceful enough to always find the way (besides, a rather quick one) to fulfill
heterogeneous fluctuations at intermediate phase nucleation. However, further we’re
going to consider such cases at which the time of intermediate phase nucleus
formation may appear to be quite large. For the sake of simplicity we’ll limit ourselves
to the case of one intermediate phase. Note, that two fundamentally different
situations are possible here. They are illustrated on Fig. 4.1a and Fig. 4.1b.
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Fig. 4.1a. Dependence of Gibbs potential on the composition,
case of total mutual solubility.
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Fig. 4.1b. Dependence of Gibbs potential on the composition,
case of limited mutual solubility.

In case (a) there is a metastable solid solution M over the whole concentration
interval, and an intermediate phase 1 (for instance, an ordered solution) is possible to
appear which is thermodynamically more favorable in a certain concentration interval.
It is significant that at annealing of A-B couple the M phase lattice exists from the
very beginning while phase 1 is absent. The system isn’'t “aware” of a more favorable
phase 1 up to fluctuation nucleation of a new lattice, so interdiffusion takes place
within the single metastable phase M like any other quasi-equilibrium process (each
physically small volume has enough time to relax to “equilibrium” state before its
composition changes considerably). Since local relaxation reaches not truly
equilibrium phases q, 1, B, but a metastable phase M, this process will be referred to
as a metaquasi-equilibrium. As it is shown in the next section, even if neglect the
time required for the lattice building, successful nucleation needs time for

concentration preparation z,~R’/D,,Ac,, R standing for the size of a new phase
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viable nucleus, Dy being the interdiffusion coefficient in the “parent” phase M, Ac, is
a concentration interval inside which phase 1 is more favourable than phase M. At
small Dy or Acp, the time 7, may appear to be larger. Typical values are: R ~ 107"cm,
Ac, ~ 1072, If Dy ~ 10"°cm?/s, 7, ~ 10%s ~ 15 minutes.

Nucleation in case (b) appears to be even more complicated. Here the lattices
of a and B phases do not continuously change one into another and “concentration
preparation”, i.e. formation of the interval Ax with concentrations (c”,c*) by way of

interdiffusion, in which only lattice transformation remains to be done, is impossible at
all.

A B
Fig. 4.2. lllustration of possibility for intermediate phase1 formation from limited solid
solutions via intermediate stage of amorphic phase with total solubility.

Indeed, until the nuclei of phase 1 appear the system isn’'t “aware” of its profit
and is supposed to establish quasi-equilibrium between initially existing a and
phases. This means that quasi-equilibrium boundary concentrations ¢/« and C/B will
set in locally at the moving interface after initial kinetic period. These concentrations
are determined by general tangent to the curves gq(c) and gg(c). This quasi-
equilibrium is not real (for it doesn’t regard phase 1 which hasn’t appeared yet), still it
is not less steady. We'll again call it metaquasi-equilibrium. It is important that here
the interdiffusion process will never make up the concentration intervals from cq to cs
including (c1,c1+Ac+), corresponding to intermediate phase. Thus, it turns out that we
obtain, at first sight, a paradoxical case — the legal phase 1 cannot arise despite its
total thermodynamic favorability.

In the context of the “refined”, free-of-drawbacks approach, only one way can be
proposed: concentration zones from ¢ to ¢y (o) and from c/g to cg (), formed in the
process of metaquasi-equilibrium diffusion, are relatively unstable and must
eventually decay: o into a+1, B’ into B+1. At that, the problem of intermediate phases
rise at interdiffusion is reduced to the problem of supersaturated solid solutions
decomposition. . Thermodynamic analysis of this situation was made |n [39]. The
klnetlc dlfflcultles here are presented by concentration supersaturations c/e-Cq and Cp-
CB which may turn out to be quite small if compared to the difference required for new
phase formation.

The probability of concentration fluctuation in a binary system is

Ng”(é\c)Z
W (&) ~exp| ————— |,
9] p( T
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where ¢" is the second derivative of Gibbs potential with respect to atomic
concentration C for the phase in which the fluctuation occurs, N — number of atoms
involved in concentration fluctuation.

For the systems with very low solubilityg, ~kT/c,. At 8¢ ~ 1/2, N ~ 100,
ca ~10"% we get: W ~ exp(-1250).

2

One may expect such fluctuation for 7 ~ . At/ ~107cm, D, ~ 10"2cm?/s

a

one gets 7, ~ 10%%° s which is absolutely unbelievable.

Hence, concentration preparation by way of fluctuation in case (b) at low
solubility of A and B is of very low probability. But the phases still appear in the
diffusion zone, so the concentration preparation is realized, though, not for all but for
many phases.

We can presuppose the following possibilities:

1. At the intermediate stage there occurs the rise of metastable phase
(amorphous, for instance), concentration range, where concentration preparation
takes place, being rather wide,. For this the curves of Gibbs phase potentials must be
arranged as indicated by Fig. 4.2.

The formation of the metastable phase itself is facilitated by, first, its greater
“overlapping” with a, B- phases, and by the possibility of its nucleation as a result of
segregation at grain boundaries or interfaces.

2. Formation of a zone with concentrations required for the intermediate phase
resulting from the processes of such a type as “cold homogenization” or diffusion-
induced grain boundary migration (DIGM).

3. Formation of concentration-prepared zones proceeding from segregation at
grain boundaries or other defects.

4. High interface tension of a and B phases leads to the following: the size of the
intermediate phase critical nucleus doesn’t exceed the interatomic distance. This is
correct anyway when

O >0, +0,

(see, for example, F.d'Heurle’s review [14]).

In this case Gibbs potential starts decreasing as the nucleus size grows from
zero thickness. Here the following situation seems to be quite appropriate: first, the 2-
dimensional nucleus of the surface intermediate phase appears at the interface, to
which the atoms from the phase bulks attach, so that 2-dimensional nucleus
continuously acquires a form of a 3-dimensional phase layer.

The authors realize that the proposed alternatives lack reasonable numerical
estimations to obtain a firm basis, thus, don’t pretend to any final explanations but
simply to formulation of the problem and some stimulating speculations.

5. Suppression of intermediate phase by solid solutions. Incubation time for
intermediate phases at interdiffusion can be stipulated not only by diffusion
suppression of their nuclei by neighbouring phases. The necessity of “concentration
preparation” for transformation of metastable formations can also influence this time.
At solid phase reactions when intermediate layers form and grow in the contact zone
of two metals, the phase composition of the diffusion zone in many cases appears to
be incomplete if compared to phase diagram (see, for example, [15, 1]). As shown
above (see [3]), this disagreement is temporary for massive samples, and it is
connected with diffusion suppressions of critical nuclei of some intermediate phases,
realized by neighbouring fast-growing phases. For the case of competition between

BicHuk Yepkacbkoeo HauioHanbHoe20 yHisepcumemy. 2008. Bunyck 141 65
Cepis ,Disuko-mamemamuyHi Hayku”
http.://bulletin.cdu.edu.ua



A.M. Gusak, A.O. Vasylevska

two or three intermetallics, the suppression and growth criteria are already obtained
above. The suppression time for the nuclei of the phases being suppressed, was also
found. It is the time that was considered the phase’s incubation time. It was assumed
that the nuclei themselves appear in the contact zone almost immediately (as a result
of heterophase fluctuations). This assumption doesn’t always prove to be correct.
Let's analyze the problem of incubation time taking into account the finite rate of
nuclei formation by the example of a single intermediate phase 1 (cs<c<cs+Acy)
between solid solutions o (0<c<Ac,) and B (1-Acsz<c<T7).

Unlimited nucleation. So, due to heterophase fluctuations, the nuclei of
intermediate phase 1 between o and  must appear. The appearance of intermediate
phase nucleus is thermodynamically favorable only if its size exceeds the critical
value /. Our case is complicated by the fact that the nucleus appears in the system
which hasn’t been homogeneous from the very beginning. So, the nucleus appears in
the conditions of chemical potential and concentration gradients. And the driving
force of the process is connected with concentration supersaturation rather than with
overcooling (though, there is a certain interrelation between them). This makes the
composition of nuclei non-homogeneous from the very beginning. Thus, when
calculating points of extremum for Gibbs potential, one must use integrals of this

Ig(c(x))S(x)dx type with varying limits (S(x)x — variable cross-section area of a
nucleus).

Besides, it should also be borne in mind that at essential overcooling
(supersaturation) there is a higher possibility of polymorphic transformation without
any composition change, diffusion of atoms being slow. Apparently, in general case
the problem presents difficulties which was considered in much more details in [7,
33-40]. Here we’ll limit ourselves to a case of narrow intermediate phases where
Gibbs potential g(c) almost doesn’t change within a narrow homogeneity range Ac
(though, derivatives 0g/oc may change significantly, (see, for example, [16]). In this
case all three kinds of nuclei reduce to a single notion of a critical nucleus, defined
from the extremal principle of Gibbs thermodynamic potential for a system with a
nucleus.

For a phase to grow a critical nucleus must appear. As stated above, unlike
phase transformations in a homogeneous system, we deal with the nuclei arising in
chemical potential gradient field. “On the left” we have a nucleus approaching
equilibrium with phase «, “on the right” — with phase B. Therefore, diffusion fluxes
pass through it. Jumps of diffusion fluxes, occurring at the boundaries a—17 and 7-8,
cause boundary motion, i.e. change of the nucleus’ size. If critical nucleus becomes
smaller ((dAx/dt)l;>0), then the phase starts growing. Suppose D, D, Dg are
effective diffusion coefficients in phases ¢, /, 8. Let nuclei of phase 1 form a layer of
Ax1=l¢ thickness between o and B. Considering Ac, Acs, Acs<<7, put down the
equation of flux balance at moving phase boundaries:

(@, —Aca)dx‘“ _ D,Ac, DAc,
dt Mt 1,

a

dx; DAc, DyAc,

dt 1, [mDy

(When the smallness conditions of Ac,, Acg are violated, the Egs. (5.1) become
roughly correct). For Ax1=xg—X,1 from (5.1) we get:

(5.1)

(1=Acy —c, = Acy)

66 BicHuk Yepkacbko20 HaujoHarbHo20 yHieepcumemy. 2008 Bunyck 141
Cepis ,,@isuko-mamemamuyHi Hayku”
http://bulletin.cdu.edu.ua



Diffusion phase competition — fundamentals (Review)

Ac Acﬂ
D + A D
di,| 1 DIACI_[ ¢ “l-g ﬂj (5.2)
dt |]cr - Cl(l_cl) ICV \/g .

As it follows from (5.2), the value (dAx/dt), becomes positive, and growth of
phase 1 is allowed at

2
t Ac,(1-¢, D, +Ac,c, D, |
>7, = = | .
o D,Ac, N

The suppression time 7; of phase 1 growth from the nuclei can be called
incubation time, if neglect time required for nuclei formation.

Finite rate of nuclei formation. Two fundamentally different cases, shown in
Fig. 4.1, are possible. Here we’ll examine the case « in greater detail. Phases a and
B have identical lattice and belong to a one metastable formation of solid solution. In
this case before a nucleus of phase 1 appears interdiffusion proceeds as a usual
quasi-equilibrium process in a one-phase system. We've agreed to term the
processes of this kind taking place in metastable system as metaquasi-equilibrium
ones.

While analyzing the diagram in the figure, one can hypothesize that
concentration range of metastable formation between the points M and N (that is ¢,

and c, + Ac; ) serves as “initial material” for phase 1 formation by way of polymorphic

transformation. However, after the nucleus of phase 1 has appeared, concentration
ranges Ac, —c, and ¢, + Ac, —1-Ac, turn out to be unstable and correspond to two-

(5.3)

phase regions on phase diagram. But according to Gibbs phase rule these regions
don’t appear in the diffusion zone as they are used in formation of the initial layer of
phase 1. If the conditions of non-suppression of phase growth are fulfilled for this
initial layer, an ordinary quasi-equilibrium process of phase layer growth proceeds
due to diffusion interaction with solid solutions at its boundaries.

Thus, we presuppose that there are three stages of the process:

1) appearance of metastable compound, call this stage “concentration®
preparation;
2) appearance of new phase nuclei, disappearance of unstable formations

and creation (at their expense) of a new stable phase layer (under certain
conditions);

3) diffusion phase growth due to interaction with solid solutions.

Let's estimate the duration of the first stage. Concentration profile c(x) in
metastable formation must become so flat that the length exceeding l.: x(cs+Acq)—
x(c1)>lsr, i.e. Aci/(6c/Vx )>ly, will be found within the interval of thermodynamically
favorable (for phase 1) concentrations (cs, c/+Acy. Here I, indicates the thickness of
the initial layer. Suppose, DM is interdiffusion coefficient in metastable solution. Let

cs,~1/2. In the approximation DM=const acM [ox = exp(— x> [4DMt)IN iDMt
c~1/2 corresponds to x~0, so that (dc/0x).-1~(m DYt)"2. So, the condition of
concentration readiness for phase 1 growth becomes Ac,(mDMt)"?> 1., so that

Tprep = 12 12D (Ac,)’. (5.4)

The value of DV for metastable phase can be estimated by the method,
proposed in [17].
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Here we shall not regard the time of lattice reconstruction. Then the time of
diffusion suppression of phase 1 nuclei can be considered as incubation time (5.3),
provided it is larger than the time of concentration preparation for critical nucleus

appearance Tprep:
2
Ac,(1—¢,)D, +Acﬁc11/Dﬂ J? J?
e cr .
D,Ac, r D" (Ac)’

If the condition (5.5) fails, i.e. diffusion permeability of phase 1 is high enough
and its nuclei are competitive, concentration preparation time becomes equal to
incubation time (5.4).

Rigorous theory of nucleation in the concentration gradient and its influence on
the incubation period and phase competition was built by Gusak, Desre and Hodaj in
the series of papers [7, 33-40].

6. Phase competition in a model of divided couple. The problem of obtaining
and suppression of intermediate phases presents special interest when realized at
solid-phase reactions in powder mixtures. Consider the initial stage of sintering of the
simplest binary mixture when the particles of initial components still preserve
independence and one can speak of two connected surfaces with different total
squares Sa, Sg, brought into contact via fast surface diffusion and diffusion through
the gas phase. For simplicity, let's take a system of two almost mutually insoluble
components, giving two intermediate phases with concentrations ¢4, ¢, and narrow
homogeneity ranges Acys, Ac2 << 1 on the phase diagram. We’ll consider surface
diffusion of both components to be fast enough to have equal chemical potentials at
each point of both surfaces at each time point. When both phases grow
simultaneously we may have the situations illustrated by schemes b,c,d on Fig. 6.1. If
one of two phase is suppressed, cases a, e are implemented.

Obviously, at the initial stage the nuclei of phase 1 must appear on the surface
of A and nuclei of phase 2 — on the surface of B. Their further destiny is stipulated by
diffusion phase competition, the theory of the latter being set out above. Main
principles of the theory will be employed in the present section.

We’'ll limit ourselves to small times of annealing, when the thickness of growing
phases is much less than the size of particles R, so that we could use planar
geometry. As is it known [9], in general case the rate of phase layer growth is
determined both by diffusion transfer and the rate of reaction at interfaces (flux
through the interface between i-th and (i+1)-th phases is j= k;j+10c, where &c -
boundary concentration deviation from the equilibrium value, k;i+s - reaction rate
constant). Flux through the i-th phase may be expressed as

. DAc,

/ Ax; +D, [k,
where D; is the effective interdiffusion coefficient, k; is a so called effective constant of
reaction rate: 1/k; = I/kjj+1 + /ki.1;. So far, we take a case of diffusion kinetics, when
phase thicknesses Dyk; typical for boundary kinetics don’t exceed the sizes of critical
nuclei. Thus, the effect of final reaction rate at interfaces can be neglected from the
very beginning.

(5.5)
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A|1|2 2 B A 2 2 B

d e

Fig. 6.1. Possible variants of growth and suppression of intermediate phases 1, 2
on free surfaces A and B being in ideal diffusion contact.

One can easily put down the system of balance equations for interface
movement in case c. In the approximation of the flux steadiness over the growing
phase layer, balance equations at moving interfaces are

dx,, _1 DA L(_DlAcl_uc}S ZL(_DZACZ_MC ]S
11 A 2%2 B>

dt ¢ A, Q| Ay Q1 Ax, 6.1)
Lu]SA :LquB,deB _ 1 D,Ac, ’
Q, Q, dt  l-c¢, Ax,

where Q,,Q,,Q, , - atomic volumes of phases and material B(A). Here we regard

interface mobility between phases 1, 2 and a gas phase (u,,u,— boundary rates).

Kirkendall effect is neglected. Egs. (6.1) easily result in the simple phase interaction
picture:

dAX, 1 (¢, DAc, Q, S D,Ac,
da ¢,-c, ’

) c, A, Q,S, Ax
dAx, 1 ~Q, S, DAc, N l1-c¢, D,Ac,
dt  c¢,-c,\ Q 'S, Ax, 1l-c, Ax, |
At the “initial point of time” we may assume Ax, =/ Ax, =1{*), |_ standing for

cr? cr

(6.2)

critical size of the nucleus. In many cases / and /) can be considered equal by
the order of magnitude. If the inequality
l1-c, >&S_ADIAC1 >i,
l-c, Q, S;D,Ac, ¢,
is fulfilled, both phases grow from the very beginning, obeying the parabolic law at
R >> Ax >> [ . Having solved the system (6.2) for this case, we find out that the ratio
of volumes for growing phases is time-constant and equals

(6.3)

c,l-c
re> =1+ [(ro*)’ +4rp-2 ——1
V2 _ SBAX2 _ C 1_CZ (6 4)
V., S,Ax, 5 C2 ’ '
Cl
where r =(D,Ac,)/(D,Ac,),p=0Q,/Q,-S;/S, .
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Hence, the ratio of volumes is determined by r¢*, i.e. not only by diffusion
coefficients but by “relative dispersivity” Sg/Sa as well. At rop® <<1 and rep’ >>1 the
dependence of Vo/Vy on rep® asymptotically approaches the lines with slopes
(I-¢,)/(1-c,)>1 and c,/c, <1, respectively. Of course, the dependence (6.4) was

obtained within a quite rough model under the conditions Sg/Sa = const,
I, << Ax; << R, which are violated with time. Actually, we can hardly expect V2/V to

be time-constant but the conclusion about the character of V,/V4 dependence on
Sg/Sa and on D,Ac, /D,Ac, must remain correct.
If inequality (6.3) fails, and, for example
Q, S, DAc, S l-c,
Q, S, D,Ac, 1-c,’

then dﬁli‘(z in Egs. (6.2) is negative. This means that critical nuclei of phase 2 on
/cr

the surface B will decompose into phase 1 and pure B, so that phase 2 will be
suppressed. This will inevitably lead to switching from case b to case a, i.e. to growth
of phase 1 layer on surface B.

At that, it can be shown that at boundaries of phase 1 and at interfaces between
surfaces A and B with gas phase we’ll have the intermediate concentration from the
interval

Ac,

2
1+ 873 % l_Cl
SA DA C1
With some (incubation) time the nuclei of phase 2 between 1 and B will stop

being suppressed and the change to case b will take place. Using the above given
approximations and writing balance equation for cases a and b, taking into account

the difference between partial diffusion coefficients D, D in phase 1, one can show
that 7,, i.e. time point at which the value becomes positive and the possibility of

diffusion growth of phase 2 layer appears, is defined by the formula
C (1_01 )/(Ig))z DIACI l_Cz Jz

2 [D Ac, 1-c
2ACI{CID1“+[§B] (lcl)DlBJ o

A

!

c,<cl =c +

<c, +Ac,..

(6.5)

T, =

i.e. it strongly depends on Sg/Sa.

Detailed analysis of all possible variants is quite intricate, therefore, it is not
given here (details can be found in [31,32]). Instead, we’d like to stress to following.
Varying the ratio Sg/Sa (‘relative dispersivity”), one may, first, transfer from
suppression of one phase to growth of both phases or suppression of another phase;
second, achieve the required relation of volumes of growing phases without changing
the volumes of initial components, and finally, change the incubation time of
suppressed phases. For instance, if phase 2 is more high-melting and
D,Ac, << D,Ac,, so that in a usual diffusion couple it is suppressed, then, enlarging
the free surface of B particles by way of grinding, it's possible to make this phase
appear and grow already at the initial stage of sintering (for this we must have
S;/S, =(D,Ac,)/(D,Ac,)) or at least reduce the time of suppression.
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If the growth of both phases is controlled by boundary kinetics at the initial
stage, i.e. phase thicknesses typical for this regime (x; =D,/k,) exceed [
considerably, expression for fluxes through phases, D,Ac;/Ax;, should be changed
into D,Ac; /(Ax; +D, /k;). This will alter the explicit expressions for growth kinetics
and cause deviation from parabolic law.

However, general conclusions will remain untouched. For example, condition of
simultaneous growth of two phases from the very beginning (Eqg. (6.3)) will acquire
the following form (at x; >>/)):

1-c, >stA k,Ac, G
l-¢c, Q,S; k,Ac, c,

i.e. it strongly depends on Sg/Sa again.

A divided diffusion couple (for example, coaxial cylinders) can represent a
model system for investigation. In this system a- and ¢-brass could stand for A and B
elements, B-brass — for intermediate element, and zinc atoms could realize diffusion
contact in both directions.
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