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The problem of initial stages of reactive diffusion is treated. The phase 

growth/suppression criteria due to diffusion interaction are analyzed. Some methods of 
incubation time calculation are proposed. The role of metastable phases at the initial stage is 
analyzed.  

 
Розглядається проблема початкових стадій реакційної дифузії. Аналізуються 

критерії росту та пригнічення фаз внаслідок дифузійної взаємодії. Пропонуються 
способи обчислення інкубаційних періодів. Аналізується роль метастабільних фаз на 
початковій стадії. 

 
Рассматривается проблема начальных стадий реакционной диффузии. 

Анализируются критерии роста и угнетения фаз вследствие диффузионного 
взаимодействия. Предлагаются способы расчета инкубационных периодов. 
Анализируется роль метастабильных фаз на начальной стадии.  

 
Keywords: diffusion, reaction, nucleation, phase competition, incubation time, 

growth/suppression criterion. 
 
Introduction 
Reactive diffusion is the diffusion-controlled growth of intermediate phase layers 

between two reacting materials proceeding due to interdiffusion through the growing 
reaction products. Studies of reactive diffusion started in 1920s when the parabolic 
law of layer growth was discovered by Tammann. Evans found the possibility of 
mixed linear-parabolic regime. Wagner, Frenkel and Sergeev suggested the 
derivations of parabolic law. After World War II the late stages of reactive diffusion 
were investigated by Pines, Kidson, Geguzin, van Bastin, van Loo, Gurov, Ugaste. 

Starting from 1980s the main interest of diffusion community steadily shifts from 
the problems of interdiffusion in solid solutions to the diffusive phase growth during 
interdiffusion (reactive diffusion) in the systems with limited solubility and the whole 
range of intermediate phases. In this review we treat the history of some ideas which 
appeared in the early 1980s and became a basis of new approach to the synergy of 
diffusion and reactions [1-32]. This review is not by far the complete story about 
reactive diffusion. It reflects authors’ personal view and is based on the traditions of 
the diffusion schools of the former Soviet Union. After 1990, when our group and 
simultaneously the group of Pierre Desre and Fiqiri Hodaj  started to modify the 
nucleation theory for the case of initial stages of reactive diffusion at nanoscale, 
much more intereting results have been obtained [7,33-43].  In this review we will 
almost omit these developments (which include rather intensive mathematical 
analysis) and concentrate over rather naïve but physically clear ideas about 
interrelation between diffusion, reactions and nucleation. 
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1. Standard model and anomaly problem. Reactive diffusion (formation and 
growth of intermediate phase layers in the diffusion zone as a result of interdiffusion 
of components through these layers) is a typical example of solid state reaction. It is 
notable for its reaction product - a crystal (generally, a polycrystal) of an intermediate 
phase rather than individual molecules (as in gas phase reactions) appears. The 
crystal remains at the site of the reaction and becomes a barrier to its further 
passing. For the reaction to proceed (when it is thermodynamically favorable) atoms 
have to diffuse through new-formed phase layers and react at one of the new-formed 
interfaces. The thicker the layers are the more time it takes to diffuse. And, therefore, 
the reaction goes more slowly. Thus, even at sufficient amount of reagents the phase 
growth rate decreases with time. It has become known since 1920s that in most 
cases the phase layer growth obeys parabolic law. We briefly review the standard 
model for the phase growth kinetics [1, 2].  

First, consider the case of phase 1 growing within narrow concentration range 
11 <<−=Δ ccc R  at the process of annealing of a sample couple containing almost 

mutually insoluble materials A, B (let A component be on the left, and B component 
on the right). Thus, we’ll neglect interdiffusion fluxes in the initial components of 
diffusion couple. Thereby, we consider all A atoms, which “managed to diffuse” to the 
1/В boundary, to react with B atoms and not to go further, growing the phase “on the 
right”. In the same way, B atoms, which “managed to diffuse” to the A/1 boundary, 
react with A and grow the phase “on the left”. Let’s neglect the molar volume 
changes at intermetallic formation, as, thus, right away disregard those effects that 
are connected with stresses, arising at phase boundaries. Besides, we’ll consider the 
condition of diffusion flux steadiness to be fulfilled over the phase thickness. In other 
words, the distribution of components in the phase layer is quasi-stationary. One can 
prove this assumption [46], but it would be easier to get it in unsophisticated way. 
Indeed, since homogeneity interval of the intermediate phase is narrow (too large 
deviations from stoichiometric composition are energetically unfavorable), 
concentration “has no way out” and it keeps itself almost constant (close to 
stoichiometry) over the whole phase layer. That’s why the time derivative of 
concentration is small, and so the flux divergence is close to zero. In one-
dimensional case (diffusion couple) the divergence is simply equal to derivative over 
diffusion coordinate. The derivative’s being equal to zero denotes that the flux density 
almost doesn’t change over the whole phase layer. This means that the product of 
interdiffusion coefficient and concentration gradient is nearly equal everywhere inside 
the phase. Still, this doesn’t imply that concentration gradient is equal everywhere, as 
interdiffusion coefficient may considerably change even at little deviations from 
stoichiometry (especially in phases of B2 - type, for example, NiAl). Hence, it’s 
generally incorrect to simply say (as it’s typically said and written) that concentration 
profile inside the phase is linear. Let’s make elementary transformations. If a certain 
value is constant, it can be taken both inside and outside the integral sign. We’ll take 
it inside the integral sign: 
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The value ∫
R

L

c

c

dcD~  is called Wagner’s integral coefficient and is often written in the 

following way: 

 11
~ cDdcD

R

L

c

c

Δ=∫ , (1.2) 
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  – effective diffusion coefficient averaged over the phase.  

We emphasize once more that, as a rule, the kinetics of solid state reactions 
isn’t determined by the diffusion coefficient and the homogeneity zone width 
separately but always by their product (i.e. the integral coefficient). And this is good 
comparison with experiment, for the homogeneity zone width in many phases is so 
narrow that it seems almost impossible to measure it experimentally. Wagner’s 
integral coefficient can be transformed using Darken’s relation, expressing 
interdiffusion coefficient in a binary system with tracer diffusion coefficients and the 
second derivative of Gibbs potential (per one atom) g  with respect to concentration: 
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Having substituted this expression into Wagner’s integral coefficient, 
considering the narrow phase homogeneity range, one gets: 
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Here ∗
1D  is diffusion coefficient of marked atoms averaged over the phase 

∗∗∗ −+≡ BA DcDcD )( 111 1 , Δ →1( , 1)g A B  is thermodynamic driving force (per one atom) 
of phase 1 formation (from A and B). 

Thus, the growth rate of the single intermediate phase is determined by the 
mobility of atoms in it (tracer diffusivities) and by Gibbs energy of phase formation. 
As we can see, the “elusive” homogeneity interval itself is of little importance for us.  

In such a way, the product of the density of B flux through phase layer and 
atomic volume (that is, “the flux density of the volume transferred by B atoms”) 
equals to 
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As is well known, the rate of interface movement is equal to the ratio of the 
fluxes step at this boundary to the concentration step. We regard the fluxes in 
marginal phases of the diffusion couple to be zero (negligible solubility). So the fluxes 
balance conditions at interfaces bring to the following two differential equations: 
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From these equations one can easily derive 
the differential equation for the phase thickness 
∆x(t): 
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And this gives the well-known parabolic law of phase growth 
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If the thickness of the layer considerably exceeds the initial thickness (the latter 
is taken right after the nucleation and lateral growth with formation of primary 
continuous layer), then  
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Now, let’s treat the case of two phases, 1 and 2, growing between two mutually 
insoluble metals. Here we again make the assumption of constant fluxes over the 
thickness of each phase (steady-state approximation): 
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Equations of particle number balance at 
interfaces have the following form: 
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It’s quite easy to obtain the system of 
differential equations for phase thicknesses from 
Eqs. (1.12): 
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Fig. 1.1. Concentration profile at 
one phase growing between 
insoluble components. 
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Fig.1.2. Concentration profile at 
two phases growing between 
insoluble components. 
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Here  
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It’s easy to make sure that the equation system (1.13) has parabolic solutions 
as well, 21

22
21

11 tkxtkx =Δ=Δ , , however, expressions for parabolic growth 
constants 1k , 2k  are not so “elegant” as in the Eq. (1.10) for the growth of one phase. 
Basic equations for any number of phase layers, growing simultaneously, are 
obtained in the same way. However, the mentioned simultaneity presents some 
problems that have become crucial since 1970-1980s with technological 
development of integrated chips manufacture and maintenance.  

Standard model is quite sufficient to describe the late stages of reactive 
diffusion in standard  “infinite” diffusion couple (with size much larger than the width 
of diffusion zone).  Yet, since 1970s, the main field of reactive diffusion applications 
shifted to microelectronics, which uses reactions in thin films. Researchers 
immediately found that in this case standard model does not work, demonstrating 
various “anomalies” (sequential phase growth, deviations from parabolic law etc.) 
Such problems lead to reconsideration of standard model. It was made almost 
simultaneously by Gurov and Gusak [3], Gösele and Tu [4], V. Dybkov [5]. 

According to [5, 6], diffusion theory proves to have such a principle drawback, 
so that it doesn’t explain (a) disagreements between the observed phase 
composition in the diffusion zone and that of the phase diagram; (b) breaking of a 
parabolic law for phase layer growth. Obviously, the author of [5, 6] might not have 
paid attention to the works [3, 4], which provide appropriate explanation for the facts 
mentioned above. And, to our mind, a number of the author’s [5, 6] statements and 
predictions, appear to be disputable or simply incorrect.  

In [5, 6] the diffusion theory is blamed for poor regard to “chemical phenomena” 
in the “chemical process”. Here the reactions at layers boundaries are meant. If so, 
the problem must be specified. Reactions in the diffusion zone at formation and 
growth of phase layers, can be divided into two types: 

reactions of the first type – formation of new phase nuclei in the contact zone as 
a result of heterophase fluctuations at chemical potential and concentration 
gradients; 

reactions of the second type – those being “reactions” at the moving boundary 
of already existing phases, comprising of three successive steps: detachment of 
atoms from a lattice of a phase (I), transition through the interface (II), and 
attachment to the lattice of another phase (III). 

Those are the reactions of the second type that are often meant, explicitly or 
implicitly, when “finite reaction rate” or “boundary kinetics” [4, 5, 6, 8-11] are taken 
into account. It makes sense to treat their influence on the process kinetics only in 
case of the “reaction” stage being limiting, i.e. characteristic time of detachment, 
transition and attachment of atoms is more or at least commensurate to that of 
diffusion delivery of both sorts of atoms at the interface. 

Interface transition time is 
B

2

D
h~1τ , where h~5·10-10 m. Attachment time τ2, at 

the worst, is reduced to time required for searching the “appropriate place” (grain-
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boundary dislocation, etc.): 
BD
d 2

, d being equal to several atomic distances. 

Detachment time, obviously, is close to τ2 by the order of magnitude. Characteristic 
time of transfer through the layer 

difτ ~ cD
x~

x
cD

x~
v
x 2

Δ
Δ

Δ
Δ
ΔΔ

 

 
(D - effective interdiffusion coefficient in the layer). Boundary kinetics appears to 

be limiting in case of τ1+2τ2>τdif, i.e. at  

.)()( // 212122 4
BD
cDdhx Δ

+<Δ  

According to the relation (1.4), 
kT

gDcD Δ
≈Δ ∗ , where D* is a combination of self-

diffusion coefficients of the components in the phase. If there is no oxide film or other 
barrier layer at the interface, then, as it is known, 1/ <<∗

BDD . So, (taking into 
account that h and d make a few atomic distances) the thickness of the phase layer 
Δх*, at which the change from boundary kinetics to diffusion regime takes place, 
doesn’t exceed the interatomic distance.  

Apparently, the situation must radically change when treating the reaction 
between a solid body and a gas. In this case the boundary kinetics regime (and linear 
phase growth) can be reached by reducing the reagent’s partial pressure in the gas 
medium which leads to atoms come at the surface.  

In the contact zone of solid bodies the boundary kinetics, connected with 
reactions of the second type, can be expected only in the presence of oxide films or 
other barrier layers at the interface. We developed alternative idea for the long stage 
of linear growth [44,45]. It presents a certain interest, for it regards the limited power 
of interfaces as sinks/sources of vacancies, and corresponding contribution of non-
equilibrium vacancies.  

In other cases the regime of phase layer growth is a diffusion controlled one 
from the very beginning, if the beginning implies the already formed layer of new 
phase nuclei able to diffusion growth. So far, we use the model which assumes that 
critical nuclei of all phases, allowed by the phase diagram, appear at once (the 
unlimited nucleation model). It is known that the growth of a new phase from the 
nucleus is energetically favorable only in case of nucleus size exceeding some 
critical value lcr, determined from extremal condition of Gibbs thermodynamic 
potential. In a one-component substance the extremality is expressed simply by the 

derivative of G with respect to the nucleus size being equal to zero: 0=
∂
∂

crIR
G

. At 

nucleation in the binary system there are some problems concerning the difference 
between the composition of a nucleus and that of initial “parent” phases, occurring in 
general case [12]. Thus, the notions of the smallest (equilibrium), most probable and 
critical nuclei do not coincide. This matter is treated in more details below. For the 
present, the actual existence of the critical nucleus size is important for us, this 
critical size becoming unstable against decomposition at 1<lcr. 
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We assume that at the initial period, successive layers of critical nuclei of all 
phases, allowed by phase diagram, appear as a result of heterophase fluctuations. It 
is significant that the nuclei arise in the chemical potential gradient field, so that finite 
differences Δμ over the thickness of each layer exist from the very beginning. 
Chemical potential gradients inside the nuclei cause diffusion fluxes through them. 
Owing to the difference in diffusivities, flux densities vary for different phases. The 
jumps of diffusion fluxes at interfaces make the boundaries move: if phase 1 provides 
more A atoms to the interface 1-2 than phase 2 takes, the interface will shift – phase 
1 will grow at the expense of phase 2. At that nuclei layers come into diffusion 
interaction. The result of the interaction varies for different phases and depends on 
diffusion characteristics of all phases in phase diagram. Those phases, for which 

x
cD

Δ
Δ− , start growing and reach the observed phase layers. The nuclei of those 

phases, for which 
crI

dt
xdΔ

, reduce, become subcritical and decay. The new ones 

arise at their place, and they suffer the same fate: they become exhausted and 
consumed by fast-growing neighbouring phases (“vampires”). 

The growth of such phases is suppressed, they exist in the contact zone only 
“virtually”, in the form of nuclei that appear and decay straight away. This explains 
the disagreement between the phase composition of the zone and phase diagram. 
Criteria of suppression and growth for the simplest cases will be obtained in the next 
section.  

Yet, the phase suppression, as it will be shown in 1.3, lasts for the finite period 
of time (though it may be quite a long one). When growing phases amount to a 

certain thickness and the fluxes through them 
x
cD

Δ
Δ−

  are reduced sufficiently, the 

value 
crI

dt
xdΔ

for the previously suppressed phase gets positive, so that it starts 

growing as well. It is confirmed by the experiment [2]. The time of nuclei suppression 
actually presents the incubation time of a phase (if not taking into account the time of 
nuclei formation). Examples of calculations are given in 1.3.  

Thus, our model shows that, at external influences being absent in non-limited 
diffusion couple, all phases allowed by phase diagram must eventually grow (this 
doesn’t concern thin films). In [5, 6] it is stated that every time quite a small fraction of 
all phases, allowed by phase diagram, grows. This conclusion in incorrect. In fact, 
during traditional investigation periods, involved in experiments, not all phases arise. 
And our model provides explanation for this. But if the periods are very long other 
phases must also appear. As mentioned, it was experimentally proved [2], for the 
phase that had been absent, arose in the zone only after annealing for hundreds of 
hours. 

When the previously suppressed phase starts growing, its own “building 
process” requires some material that in other case would be used for the extension of 
other layers. This means that in the moment the suppressed phases start their 
growing, the growth kinetics of other phases acquires some peculiarities. The latter 
are briefly analyzed in [3]. 

The above-described situation seems to be logically clear. However, nature is 
not obliged to keep to our logic. It may be quite a real case, at which for some 
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reasons the nuclei formation in some phases rather than phase growth from the 
nuclei is opposed; while the emergence of nuclei in metastable phases may appear 
to be easy, and these nuclei may start growing and suppressing the nuclei of “legal” 
stable phases, which had appeared subsequently. The conditions for formation of 
these stable phases’ nuclei depend on the type of neighbouring phases and therefore 
are considered the “parent” ones. Eventually, the solid phase chemical interaction 
becomes highly complicated and turns to be strongly dependent on random factors 
arising at the initial stage of the contact. 

 
2. Criteria of phase growth/suppression (approximation of unlimited 

nucleation). Let’s treat the initial stage of phase formation at annealing of the 
diffusion couple A-B, regarding the phase diagram to include two intermediate 
phases 1 (с1, с1+Δс1) and 2 (с2, с2+Δс2), and neglecting the solubilities of A in B and 
B in A. The concentration profile can be depicted from Fig. 1.2 (see previous).  

Then the equations of diffusion interaction between phases are of the following 
form: 
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According to the accepted model, the layers of critical nuclei of both phases 
appear in the contact zone at the very initial stage. From Eq. (2.1), the expressions 
for phase thicknesses Δх1=Δх12 – Δх1, Δх2= Δх2В – Δх12  follow: 
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Simple analysis of equalities (2.2) shows that the phase behaviour is 
determined by the value of dimensionless parameter 
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xd , , that is phase layer 2 grows 

from the very beginning, suppressing the growth of phase 1 nuclei (phase 2 is a 
“vampire”) 
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xd , , that is phase layer 1 

grows from the beginning, suppressing the growth of phase 2 nuclei (phase 1 is a 
“vampire”) 
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Thus, the criterion for the suppression and growth of phases at the initial stage 
for the system A-1-2-B is obtained; it is convenient to represent it on the diagram 
(see Fig. 2.1).  

 
The numbers denote those phases 

that grow from the very beginning. 
Similarly, we can find the criteria for the 
suppression and growth in case of three 
intermediate phases between mutually 
insoluble A and B.  

 
 
 
 
 

The corresponding graphical representation of the criterion is given on Fig. 2.2. 
The arrows indicate the sequence of phase composition change in the diffusion zone.  

 
3. Incubation time 
As it was told in the first paragraph, phase suppression cannot be everlasting. 

Let’s again view system B for the case of )1()1( 21 ccr −−> , when at the initial point 
of time the nuclei of phase 2 are “exhausted” by the growing phase 1. One can easily 
check that the growth of the single phase 1 between insoluble A and B takes place 
according to the following law: 
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At that critical nuclei of the phase 2 are constantly arising at the boundary of the 
growing phase 1 and B. Taking (2.2) into account the rate dtxd /2Δ  for these nuclei is 
determined by the equality: 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ Δ
−
−

+
Δ
Δ

−
−

=
Δ

)(2
22

2

1

1

11

12

2

1
11

crI I
cD

c
c

x
cD

ccdt
xd

cr

. (3.2) 

As the thickness Δх1 increases, such a moment comes when the value 

crIdt
xd 2Δ passes through zero and becomes positive, i.e. phase 2 will no longer be 

suppressed. This will occur at: 
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that is, according to (3.1), the time point for this is: 
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It is quite natural for the time τ2 of phase 2 suppression to be referred to as 
incubation time, if disregard the time of first critical nuclei formation. 

If DiΔCi at least approximately fit the Arrhenius dependence ( )(exp( kTQ− , for 
more details see [1]), then: 

 
kT

QQ 122 −exp  (3.5) 

one may expect 212 QQ > , so that incubation time must reduce with 
temperature growth. If, by chance, 212 QQ < , it should mean that the barriers for 
atom jumps in phase 2 are much lower than those in phase1, so at commensurate 
pre-exponential factors one may expect the diffusivity of phase 2 to be much higher 
than that of phase1, D2ΔC2>> D1ΔC1, and phase 2 will appear to be not the 
suppressed phase but the suppressive one (a “vampire”), the growth of phase 1 will 
be opposed and its incubation time will reduce with the growth of T. Let’s specify the 
calculation of the critical nucleus value. Consider the formation of phase1 nucleus at 
the plane interface α and β. The formation involves Gibbs bulk energy gain: 

ββαα VggnVggn )()( 11 −+−  

and surface energy loss αβαβββαα σσσ SSS −+ 1111  connected with the change of α-β 
contact to two contacts α-1 and 1-β (σα1, σ1β, σαβ – interface tension coefficients). 
From considerations of symmetry (disregarding anisotropy of phase lattices) the 
basis of the nucleus can be treated as a circle of a certain radius R (Sαβ=πR2). 
Similarly to the nucleus at the boundary of two identical grains (see [13]) it’s quite 
easy to find boundary angles and dependences of ΔG on R:  
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The composition and components’ chemical potentials of the appeared nucleus 
vary over X, which has radical influence on its fate. Thus, in the strict sense, while 
calculating ΔG one should take integrals of dVggn∫ − )( 1α  type instead of n(gα-g1)Vα. 
This was realized in [7, 33-40]. Now we consider C gradient to be small and function 
g(C) to vary insignificantly inside the nucleus, such that g1 implies minimum of Gibbs 
potential (per one atom) for phase 1 (and gα, gβ – Gibbs potentials of pure A and B). 

From thermodynamic viewpoint, the nucleus is able to growth at R>Rcr, G(R) 
monotone decreasing with R increase. Though, it doesn’t mean that neighbouring 
phases, also able to growth, will give it such an opportunity. Investigating extremal 
properties of the function (3.8), one can achieve: 
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Transversal size of the critical nucleus: 
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4. Should we rely upon the ingenuity of nature? Nucleation problems. 

Metaquasi-equilibrium conception. Until now we’ve been considering nature to be 
resourceful enough to always find the way (besides, a rather quick one) to fulfill 
heterogeneous fluctuations at intermediate phase nucleation. However, further we’re 
going to consider such cases at which the time of intermediate phase nucleus 
formation may appear to be quite large. For the sake of simplicity we’ll limit ourselves 
to the case of one intermediate phase. Note, that two fundamentally different 
situations are possible here. They are illustrated on Fig. 4.1a and Fig. 4.1b.  
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Fig. 4.1a. Dependence of Gibbs potential on the composition, 

case of total mutual solubility. 
 

 
Fig. 4.1b. Dependence of Gibbs potential on the composition, 

case of limited mutual solubility. 
In case (a) there is a metastable solid solution M over the whole concentration 

interval, and an intermediate phase 1 (for instance, an ordered solution) is possible to 
appear which is thermodynamically more favorable in a certain concentration interval. 
It is significant that at annealing of A-B couple the M phase lattice exists from the 
very beginning while phase 1 is absent. The system isn’t “aware” of a more favorable 
phase 1 up to fluctuation nucleation of a new lattice, so interdiffusion takes place 
within the single metastable phase M like any other quasi-equilibrium process (each 
physically small volume has enough time to relax to “equilibrium” state before its 
composition changes considerably). Since local relaxation reaches not truly 
equilibrium phases α, 1, β, but a metastable phase M, this process will be referred to 
as a metaquasi-equilibrium. As it is shown in the next section, even if neglect the 
time required for the lattice building, successful nucleation needs time for 
concentration preparation 1τ ~ mM cDR Δ/2 , R standing for the size of a new phase 
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viable nucleus, DM  being the interdiffusion coefficient in the “parent” phase M, Δсm is 
a concentration interval inside which phase 1 is more favourable than phase M. At 
small DM or Δсm the time 1τ  may appear to be larger. Typical values are: R ~ 10-7сm, 
Δсm ~ 10-2. If DM ~ 10-15сm2/s, 1τ  ~ 103s ~ 15 minutes. 

Nucleation in case (b) appears to be even more complicated. Here the lattices 
of α and β phases do not continuously change one into another and “concentration 
preparation”, i.e. formation of the interval Δх with concentrations ( RL

c cc 1, ) by way of 
interdiffusion, in which only lattice transformation remains to be done, is impossible at 
all.  

 
Fig. 4.2. Illustration of possibility for intermediate phase1 formation from limited solid 

solutions via intermediate stage of amorphic phase with total solubility. 
Indeed, until the nuclei of phase 1 appear the system isn’t “aware” of its profit 

and is supposed to establish quasi-equilibrium between initially existing α and β 
phases. This means that quasi-equilibrium boundary concentrations с/

α and с/
β will 

set in locally at the moving interface after initial kinetic period. These concentrations 
are determined by general tangent to the curves gα(с) and gβ(с). This quasi-
equilibrium is not real (for it doesn’t regard phase 1 which hasn’t appeared yet), still it 
is not less steady. We’ll again call it metaquasi-equilibrium. It is important that here 
the interdiffusion process will never make up the concentration intervals from с/

α to с/
β 

including (с1,с1+Δс1), corresponding to intermediate phase. Thus, it turns out that we 
obtain, at first sight, a paradoxical case – the legal phase 1 cannot arise despite its 
total thermodynamic favorability. 

In the context of the “refined”, free-of-drawbacks approach, only one way can be 
proposed: concentration zones from сα to с/

α (α/) and from с/
β to сβ (β/), formed in the 

process of metaquasi-equilibrium diffusion, are relatively unstable and must 
eventually decay: α/ into α+1, β/ into β+1. At that, the problem of intermediate phases 
rise at interdiffusion is reduced to the problem of supersaturated solid solutions 
decomposition. . Thermodynamic analysis of this situation was made in [39]. The 
kinetic difficulties here are presented by concentration supersaturations с/

α-сα and сβ-
с/
β which may turn out to be quite small if compared to the difference required for new 

phase formation. 
The probability of concentration fluctuation in a binary system is 

⎟⎟
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where g" is the second derivative of Gibbs potential with respect to atomic 
concentration C for the phase in which the fluctuation occurs, N – number of atoms 
involved in concentration fluctuation. 

For the systems with very low solubility αα ckT~g ″ . At δс ~ 1/2, N ~ 100,  
сα ~10- 2  we get: W ~ ехр(-1250). 

One may expect such fluctuation for 
WD

I~
2

α

τ . At l ~ 10-7сm, Dα ~ 10-12cm2/s 

one gets 1τ  ~ 10400 s which is absolutely unbelievable.  
Hence, concentration preparation by way of fluctuation in case (b) at low 

solubility of A and B is of very low probability. But the phases still appear in the 
diffusion zone, so the concentration preparation is realized, though, not for all but for 
many phases.  

We can presuppose the following possibilities: 
1. At the intermediate stage there occurs the rise of metastable phase 

(amorphous, for instance), concentration range, where concentration preparation 
takes place, being rather wide,. For this the curves of Gibbs phase potentials must be 
arranged as indicated by Fig. 4.2. 

The formation of the metastable phase itself is facilitated by, first, its greater 
“overlapping” with α, β- phases, and by the possibility of its nucleation as a result of 
segregation at grain boundaries or interfaces.  

2. Formation of a zone with concentrations required for the intermediate phase 
resulting from the processes of such a type as “cold homogenization” or diffusion-
induced grain boundary migration (DIGM). 

3. Formation of concentration-prepared zones proceeding from segregation at 
grain boundaries or other defects. 

4. High interface tension of α and β phases leads to the following: the size of the 
intermediate phase critical nucleus doesn’t exceed the interatomic distance. This is 
correct anyway when  

βααβ σσσ 11 +>  
(see, for example, F.d'Heurlе’s review [14]). 
In this case Gibbs potential starts decreasing as the nucleus size grows from 

zero thickness. Here the following situation seems to be quite appropriate: first, the 2-
dimensional nucleus of the surface intermediate phase appears at the interface, to 
which the atoms from the phase bulks attach, so that 2-dimensional nucleus 
continuously acquires a form of a 3-dimensional phase layer. 

The authors realize that the proposed alternatives lack reasonable numerical 
estimations to obtain a firm basis, thus, don’t pretend to any final explanations but 
simply to formulation of the problem and some stimulating speculations.  

5. Suppression of intermediate phase by solid solutions. Incubation time for 
intermediate phases at interdiffusion can be stipulated not only by diffusion 
suppression of their nuclei by neighbouring phases. The necessity of “concentration 
preparation” for transformation of metastable formations can also influence this time. 
At solid phase reactions when intermediate layers form and grow in the contact zone 
of two metals, the phase composition of the diffusion zone in many cases appears to 
be incomplete if compared to phase diagram (see, for example, [15, 1]). As shown 
above (see [3]), this disagreement is temporary for massive samples, and it is 
connected with diffusion suppressions of critical nuclei of some intermediate phases, 
realized by neighbouring fast-growing phases. For the case of competition between 
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two or three intermetallics, the suppression and growth criteria are already obtained 
above. The suppression time for the nuclei of the phases being suppressed, was also 
found. It is the time that was considered the phase’s incubation time. It was assumed 
that the nuclei themselves appear in the contact zone almost immediately (as a result 
of heterophase fluctuations). This assumption doesn’t always prove to be correct. 
Let’s analyze the problem of incubation time taking into account the finite rate of 
nuclei formation by the example of a single intermediate phase 1 (c1<c<с1+∆c1) 
between solid solutions α (0<с<∆сα) and β (1–∆сβ<с<1). 

Unlimited nucleation. So, due to heterophase fluctuations, the nuclei of 
intermediate phase 1 between α and β must appear. The appearance of intermediate 
phase nucleus is thermodynamically favorable only if its size exceeds the critical 
value lcr. Our case is complicated by the fact that the nucleus appears in the system 
which hasn’t been homogeneous from the very beginning. So, the nucleus appears in 
the conditions of chemical potential and concentration gradients. And the driving 
force of the process is connected with concentration supersaturation rather than with 
overcooling (though, there is a certain interrelation between them). This makes the 
composition of nuclei non-homogeneous from the very beginning. Thus, when 
calculating points of extremum for Gibbs potential, one must use integrals of this 

∫
R

L

x

x

dxxSxcg )())((  type with varying limits (S(x)x – variable cross-section area of a 

nucleus). 
Besides, it should also be borne in mind that at essential overcooling 

(supersaturation) there is a higher possibility of polymorphic transformation without 
any composition change, diffusion of atoms being slow. Apparently, in general case 
the problem presents difficulties which was considered in much more details in [7, 
33-40]. Here we’ll limit ourselves to a case of narrow intermediate phases where 
Gibbs potential g(c) almost doesn’t change within a narrow homogeneity range ∆с 
(though, derivatives cg ∂∂ /  may change significantly, (see, for example, [16]). In this 
case all three kinds of nuclei reduce to a single notion of a critical nucleus, defined 
from the extremal principle of Gibbs thermodynamic potential for a system with a 
nucleus.  

For a phase to grow a critical nucleus must appear. As stated above, unlike 
phase transformations in a homogeneous system, we deal with the nuclei arising in 
chemical potential gradient field. “On the left” we have a nucleus approaching 
equilibrium with phase α, “on the right” – with phase β. Therefore, diffusion fluxes 
pass through it. Jumps of diffusion fluxes, occurring at the boundaries α–1 and 1–β, 
cause boundary motion, i.e. change of the nucleus’ size. If critical nucleus becomes 
smaller ((d∆x/dt)lcr>0), then the phase starts growing. Suppose Dα, Dl, Dβ are 
effective diffusion coefficients in phases α, l, β. Let nuclei of phase 1 form a layer of 
∆x1=lcr thickness between α and β. Considering ∆сα, ∆с1, ∆сβ<<1, put down the 
equation of flux balance at moving phase boundaries: 
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(When the smallness conditions of ∆сα, ∆сβ are violated, the Eqs. (5.1) become 
roughly correct). For ∆х1=хβ1–хα1  from (5.1) we get: 
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As it follows from (5.2), the value 
crI

dtxd )/( Δ becomes positive, and growth of 
phase 1 is allowed at 

 α α β βτ
π

⎡ ⎤Δ − + Δ
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1 1
1

1 1

(1 )
cr

c c D c c D I
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D c
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The suppression time τ1 of phase 1 growth from the nuclei can be called 
incubation time, if neglect time required for nuclei formation. 

Finite rate of nuclei formation. Two fundamentally different cases, shown in 
Fig. 4.1, are possible. Here we’ll examine the case α in greater detail. Phases α and 
β have identical lattice and belong to a one metastable formation of solid solution. In 
this case before a nucleus of phase 1 appears interdiffusion proceeds as a usual 
quasi-equilibrium process in a one-phase system. We’ve agreed to term the 
processes of this kind taking place in metastable system as metaquasi-equilibrium 
ones.  

While analyzing the diagram in the figure, one can hypothesize that 
concentration range of metastable formation between the points M and N (that is 1c ′  
and 11 cc ′+′ Δ ) serves as “initial material” for phase 1 formation by way of polymorphic 
transformation. However, after the nucleus of phase 1 has appeared, concentration 
ranges 1ccα −Δ  and βccc ΔΔ −−+ 111  turn out to be unstable and correspond to two-
phase regions on phase diagram. But according to Gibbs phase rule these regions 
don’t appear in the diffusion zone as they are used in formation of the initial layer of 
phase 1. If the conditions of non-suppression of phase growth are fulfilled for this 
initial layer, an ordinary quasi-equilibrium process of phase layer growth  proceeds 
due to diffusion interaction with solid solutions at its boundaries.  

Thus, we presuppose that there are three stages of the process: 
1) appearance of metastable compound, call this stage “concentration“ 

preparation;  
2) appearance of new phase nuclei, disappearance of unstable formations 

and creation (at their expense) of a new stable phase layer (under certain 
conditions); 

3) diffusion phase growth due to interaction with solid solutions. 
Let’s estimate the duration of the first stage. Concentration profile с(х) in 

metastable formation must become so flat that the length exceeding lcr: x(с1+∆с1)–
x(с1)>lcr, i.e. ∆с1/( xc ∇∂  )>lcr,  will be found within the interval of thermodynamically 
favorable (for phase 1) concentrations (с1, с1+∆с1. Here lcr indicates the thickness of 
the initial layer. Suppose, DM is interdiffusion coefficient in metastable solution. Let 
с1,~1/2. In the approximation DM=const  tDItDxxc MMM π)exp( 42−≅∂∂ , 
с~1/2 corresponds to x~0, so that (дс/дх)c~1~(π DMt)1/2. So, the condition of 
concentration readiness for phase 1 growth becomes ∆c1(πDMt)1/2≥ lcr, so that  
 2

1
2 )( cDII M
crprep Δ≈ πτ . (5.4) 

The value of DM for metastable phase can be estimated by the method, 
proposed in [17]. 



A.M. Gusak, A.O. Vasylevska 

Вісник Черкаського національного університету. 2008 Випуск 141  
Серія „Фізико-математичні науки”  

http://bulletin.cdu.edu.ua 

68 

Here we shall not regard the time of lattice reconstruction. Then the time of 
diffusion suppression of phase 1 nuclei can be considered as incubation time (5.3), 
provided it is larger than the time of concentration preparation for critical nucleus 
appearance τprep: 

 2
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If the condition (5.5) fails, i.e. diffusion permeability of phase 1 is high enough 
and its nuclei are competitive, concentration preparation time becomes equal to 
incubation time (5.4). 

Rigorous theory of nucleation in the concentration gradient and its influence on 
the incubation period and phase competition was built by Gusak, Desre and Hodaj in 
the series of papers [7, 33-40]. 

6. Phase competition in a model of divided couple. The problem of obtaining 
and suppression of intermediate phases presents special interest when realized at 
solid-phase reactions in powder mixtures. Consider the initial stage of sintering of the 
simplest binary mixture when the particles of initial components still preserve 
independence and one can speak of two connected surfaces with different total 
squares SA, SB, brought into contact via fast surface diffusion and diffusion through 
the gas phase. For simplicity, let’s take a system of two almost mutually insoluble 
components, giving two intermediate phases with concentrations c1, c2 and narrow 
homogeneity ranges Δc1, Δc2 << 1 on the phase diagram. We’ll consider surface 
diffusion of both components to be fast enough to have equal chemical potentials at 
each point of both surfaces at each time point. When both phases grow 
simultaneously we may have the situations illustrated by schemes b,c,d on Fig. 6.1. If 
one of two phase is suppressed, cases a, e are implemented.  

Obviously, at the initial stage the nuclei of phase 1 must appear on the surface 
of A and nuclei of phase 2 – on the surface of B. Their further destiny is stipulated by 
diffusion phase competition, the theory of the latter being set out above.  Main 
principles of the theory will be employed in the present section.  

We’ll limit ourselves to small times of annealing, when the thickness of growing 
phases is much less than the size of particles R, so that we could use planar 
geometry. As is it known [9], in general case the rate of phase layer growth is 
determined both by diffusion transfer and the rate of reaction at interfaces (flux 
through the interface between i-th and (i+1)-th phases is j = ki,i+1δc, where δc - 
boundary concentration deviation from the equilibrium value, ki,i+1 - reaction rate 
constant). Flux through the i-th phase may be expressed as 

iii

ii

kDx
cDj

+Δ
Δ

= , 

where Di is the effective interdiffusion coefficient, ki is a so called effective constant of 
reaction rate: 1/ki = l/ki,i+1 + l/ki-1,i. So far, we take a case of diffusion kinetics, when 
phase thicknesses Di/ki typical for boundary kinetics don’t exceed the sizes of critical 
nuclei. Thus, the effect of final reaction rate at interfaces can be neglected from the 
very beginning.  
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Fig. 6.1. Possible variants of growth and suppression of intermediate phases 1, 2  

on free surfaces A and B being in ideal diffusion contact. 
 

One can easily put down the system of balance equations for interface 
movement in case c. In the approximation of the flux steadiness over the growing 
phase layer, balance equations at moving interfaces are 
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where )(21 ,, ABΩΩΩ  - atomic volumes of phases and material В(А). Here we regard 
interface mobility between phases 1, 2 and a gas phase ( 21 ,uu – boundary rates). 
Kirkendall effect is neglected. Eqs. (6.1) easily result in the simple phase interaction 
picture: 
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At the “initial point of time” we may assume )()( , 2
2

1
1 crcr IxIx =Δ=Δ , crI  standing for 

critical size of the nucleus. In many cases )(1
crI  and )(2

crI  can be considered equal by 
the order of magnitude. If the inequality 
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is fulfilled, both phases grow from the very beginning, obeying the parabolic law at 
crIxR >>Δ>> . Having solved the system (6.2) for this case, we find out that the ratio 

of volumes for growing phases is time-constant and equals 
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Hence, the ratio of volumes is determined by 2ϕr , i.e. not only by diffusion 
coefficients but by “relative dispersivity” SB/SA as well. At 12 <<ϕr  and 12 >>ϕr  the 
dependence of V2/V1 on 2ϕr  asymptotically approaches the lines with slopes 

111 21 >−− )()( cc  and 121 <cc , respectively. Of course, the dependence (6.4) was 
obtained within a quite rough model under the conditions SB/SA = const, 

RxI icr <<Δ<< , which are violated with time. Actually, we can hardly expect V2/V1 to 
be time-constant but the conclusion about the character of V2/V1 dependence on 
SB/SA  and on 1122 cDcD ΔΔ  must remain correct.  

If inequality (6.3) fails, and, for example 
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then 
crIdt

xd 2Δ in Eqs. (6.2) is negative. This means that critical nuclei of phase 2 on 

the surface B will decompose into phase 1 and pure B, so that phase 2 will be 
suppressed. This will inevitably lead to switching from case b to case a, i.e. to growth 
of phase 1 layer on surface B. 

At that, it can be shown that at boundaries of phase 1 and at interfaces between 
surfaces A and B with gas phase we’ll have the intermediate concentration from the 
interval 
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With some (incubation) time the nuclei of phase 2 between 1 and B will stop 
being suppressed and the change to case b will take place. Using the above given 
approximations and writing balance equation for cases a and b, taking into account 
the difference between partial diffusion coefficients BA DD 11 ,  in phase 1, one can show 
that 2τ , i.e. time point at which the value becomes positive and the possibility of 
diffusion growth of phase 2 layer appears, is defined by the formula 

 
( ) 2

1

2

22

11

11

2

111

22
11

2 1
1

12

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

Δ
Δ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+Δ

−
=

c
c

cD
cD

Dc
S
SDcc

Icc

B

A

BA

cr

)(

)( )(

τ , (6.5) 

i.e. it strongly depends on SB/SA. 
Detailed analysis of all possible variants is quite intricate, therefore, it is not 

given here (details can be found in [31,32]). Instead, we’d like to stress to following. 
Varying the ratio SB/SA (“relative dispersivity”), one may, first, transfer from 
suppression of one phase to growth of both phases or suppression of another phase; 
second, achieve the required relation of volumes of growing phases without changing 
the volumes of initial components, and finally, change the incubation time of 
suppressed phases. For instance, if phase 2 is more high-melting and 

1122 cDcD Δ<<Δ , so that in a usual diffusion couple it is suppressed, then, enlarging 
the free surface of B particles by way of grinding, it’s possible to make this phase 
appear and grow already at the initial stage of sintering (for this we must have 

)()( 2211 cDcDSS AB ΔΔ= ) or at least reduce the time of suppression.  
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If the growth of both phases is controlled by boundary kinetics at the initial 
stage, i.e. phase thicknesses typical for this regime ( iii kDx =∗ ) exceed )( i

crI  
considerably, expression for fluxes through phases, iii xcD ΔΔ , should be changed 
into )( iiiii kDxcD +ΔΔ . This will alter the explicit expressions for growth kinetics 
and cause deviation from parabolic law. 

However, general conclusions will remain untouched. For example, condition of 
simultaneous growth of two phases from the very beginning (Eq. (6.3)) will acquire 
the following form (at )( i

cri Ix >>∗ ): 
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i.e. it strongly depends on SB/SA again.  
A divided diffusion couple (for example, coaxial cylinders) can represent a 

model system for investigation. In this system α- and ε-brass could stand for A and B 
elements, β-brass – for intermediate element, and zinc atoms could realize diffusion 
contact in both directions.  
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